31 research outputs found

    The evolution of male-biased sexual size dimorphism is associated with increased body size plasticity in males

    Full text link
    1. Sexual size dimorphism (SSD) can vary drastically across environments, demonstrating pronounced sex-specific plasticity. In insects, females are usually the larger and more plastic sex. However, the shortage of taxa with male-biased SSD hampers the assessment of whether the greater plasticity in females is driven by selection on size or represents an effect of the female reproductive role. Here, we specifically address the role of sex-specific plasticity of body size in the evolution of SSD reversals to disentangle sex and size effects. 2. We first investigate sex-specific body size plasticity in Sepsis punctum and Sepsis neocynipsea as two independent cases of intraspecific SSD reversals in sepsid flies. In both species, directional variation in SSD between populations is driven by stronger sexual selection on male size. Using controlled laboratory breeding, we find evidence for sex-specific plasticity and increased condition dependence of male size in populations with male-biased SSD, but not of female size in populations with female-biased SSD. 3. To extend the comparative scope, we next estimate sex-specific body size plasticity in eight additional fly species that differ in the direction of SSD under laboratory conditions. In all species with male-biased SSD we find males to be the more plastic sex, while this was only rarely the case in species with female-biased SSD, thus suggesting a more general trend in Diptera. 4. To examine the generality of this pattern in holometabolous insects, we combine our data with data from the literature in a meta-analysis. Again, male body size tends to be more plastic than female size when males are the larger sex, though female size is now also generally more plastic when females are larger. 5. Our findings indicate that primarily selection on size, rather than the reproductive role per se, drives the evolution of sex-specific body size plasticity. However, sepsid flies, and possibly Diptera in general, show a clear sexual asymmetry with greater male than female plasticity related to SSD, likely driven by strong sexual selection on males. Although further research controlling for phylogenetic and ecological confounding effects is needed, our findings are congruent with theory in suggesting that condition dependence plays a pivotal role in the evolution of sexual size dimorphism

    Precocious Metamorphosis in the Juvenile Hormone–Deficient Mutant of the Silkworm, Bombyx mori

    Get PDF
    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several “moltinism” mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval–larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval–pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH–deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis

    The evolution of male-biased sexual size dimorphism is associated with increased body size plasticity in males

    Full text link
    1. Sexual size dimorphism (SSD) can vary drastically across environments, demonstrating pronounced sex-specific plasticity. In insects, females are usually the larger and more plastic sex. However, the shortage of taxa with male-biased SSD hampers the assessment of whether the greater plasticity in females is driven by selection on size or represents an effect of the female reproductive role. Here, we specifically address the role of sex-specific plasticity of body size in the evolution of SSD reversals to disentangle sex and size effects. 2. We first investigate sex-specific body size plasticity in Sepsis punctum and Sepsis neocynipsea as two independent cases of intraspecific SSD reversals in sepsid flies. In both species, directional variation in SSD between populations is driven by stronger sexual selection on male size. Using controlled laboratory breeding, we find evidence for sex-specific plasticity and increased condition dependence of male size in populations with male-biased SSD, but not of female size in populations with female-biased SSD. 3. To extend the comparative scope, we next estimate sex-specific body size plasticity in eight additional fly species that differ in the direction of SSD under laboratory conditions. In all species with male-biased SSD we find males to be the more plastic sex, while this was only rarely the case in species with female-biased SSD, thus suggesting a more general trend in Diptera. 4. To examine the generality of this pattern in holometabolous insects, we combine our data with data from the literature in a meta-analysis. Again, male body size tends to be more plastic than female size when males are the larger sex, though female size is now also generally more plastic when females are larger. 5. Our findings indicate that primarily selection on size, rather than the reproductive role per se, drives the evolution of sex-specific body size plasticity. However, sepsid flies, and possibly Diptera in general, show a clear sexual asymmetry with greater male than female plasticity related to SSD, likely driven by strong sexual selection on males. Although further research controlling for phylogenetic and ecological confounding effects is needed, our findings are congruent with theory in suggesting that condition dependence plays a pivotal role in the evolution of sexual size dimorphism

    Data from: The evolution of male-biased sexual size dimorphism is associated with increased body size plasticity in males

    No full text
    1.Sexual size dimorphism (SSD) can vary drastically across environments, demonstrating pronounced sex-specific plasticity. In insects, females are usually the larger and more plastic sex. However, the shortage of taxa with male-biased SSD hampers the assessment of whether the greater plasticity in females is driven by selection on size or represents an effect of the female reproductive role. Here we specifically address the role of sex-specific plasticity of body size in the evolution of SSD reversals to disentangle sex and size effects. 2.We first investigate sex-specific body size plasticity in Sepsis punctum and S. neocynipsea as two independent cases of intraspecific SSD reversals in sepsid flies. In both species, directional variation in SSD between populations is driven by stronger sexual selection on male size. Using controlled laboratory breeding, we find evidence for sex-specific plasticity and increased condition dependence of male size in populations with male-biased SSD, but not of female size in populations with female-biased SSD, indicating no adaptive canalization of female size. 3.To extend the comparative scope, we next estimate sex-specific body size plasticity in eight additional fly species that differ in the direction of SSD under laboratory conditions. In all species with male-biased SSD we find males to be the more plastic sex, while this was only rarely the case in species with female-biased SSD, thus suggesting a more general trend in Diptera. 4.To examine the generality of this pattern in holometabolous insects, we combine our data with data from the literature in a meta-analysis. Again, male body size tends to be more plastic than female size when males are the larger sex, though female size is now also generally more plastic when females are larger. 5.Our findings indicate that primarily selection on size, rather than the reproductive role per se, drives the evolution of sex-specific body size plasticity. However, sepsid flies, and possibly Diptera in general, show a clear sexual asymmetry with greater male than female plasticity related to SSD, likely driven by strong sexual selection on males. Although further research controlling for phylogenetic and ecological confounding effects is needed, our findings are congruent with theory in suggesting that condition dependence plays a pivotal role in the evolution of sexual size dimorphism

    The implications of temperature-mediated plasticity in larval instar number for development within a marine invertebrate, the shrimp Palaemonetes varians

    Get PDF
    Variations in larval instar number are common among arthropods. Here, we assess the implications of temperature-mediated variations in larval instar number for larval development time, larval growth rates, and juvenile dry weight within the palaemonid shrimp, Palaemonetes varians. In contrast with previous literature, which focuses on terrestrial arthropods, particularly model and pest species often of laboratory lines, we use wild shrimp, which differ in their life history from previous models. Newly-hatched P. varians larvae were first reared at 5, 10, 17, 25, and 30°C to assess their thermal scope for development. Larvae developed at 17, 25, and 30°C. At higher temperatures, larvae developed through fewer larval instars. Two dominant developmental pathways were observed; a short pathway of four instars and a long pathway of five instars. Longer developmental pathways of six to seven instars were rarely observed (mostly at lower temperatures) and consisted of additional instars as ‘repeat’ instars; i.e. little developmental advance over the preceding instar. To assess the implications of temperature-mediated variation in larval instar number, newly-hatched larvae were then reared at 15, 20, and 25°C. Again, the proportion of larvae developing through four instars increased with temperature. At all temperatures, larval development time and juvenile dry weight were greater for larvae developing through five instars. Importantly, because of the increasing proportion of larvae developing through four instars with increasing temperature, larval traits associated with this pathway (reduced development time and juvenile dry weight) became more dominant. As a consequence of increasing growth rate with temperature, and the shift in the proportion of larvae developing through four instars, juvenile dry weight was greatest at intermediate temperatures (20°C). We conclude that at settlement P. varians juveniles do not follow the temperature-size rule; this is of importance for life-history ecology in response to environmental change, as well as for aquaculture applications

    Body size data across temperatures and food treatments in Sepsis punctum and Sepsis neocynipsea

    No full text
    Individual hind tibia length measurements (in mm) for Sepsis punctum and Sepsis neocynipsea raised at different temperatures and with different amounts of food

    Comparative analysis of larval growth in Lepidoptera reveals instar‐level constraints

    No full text
    Abstract 1. Juvenile growth trajectories evolve via the interplay of selective pressures on age and size at maturity, and developmental constraints. In insects, the moulting cycle is a major constraint on larval growth trajectories. 2. Surface area to volume ratio of a larva decreases during growth, so renewal of certain surfaces by moulting is likely needed for the maintenance of physiological efficiency. A null hypothesis of isometry, implied by Dyar’s Rule, would mean that the relative measures of growth remain constant across moults and instars. 3. We studied ontogenetic changes and allometry in instar‐specific characteristics of larval growth in 30 lepidopteran species in a phylogenetic comparative framework. 4. Relative instar‐specific mass increments (RMI) typically, but not invariably, decreased across instars. Ontogenetic change in RMIs varied among families with little within‐family variation. End‐of‐instar growth deceleration (GD) became stronger with increasing body size across instars. Across‐instar change in GD was conserved across taxa. Ontogenetic allometry was generally non‐isometric in both RMI and GD. 5. Results indicate that detailed studies on multiple species are needed for generalizations concerning growth trajectory evolution. Developmental and physiological mechanisms affecting growth trajectory evolution show different degrees of evolutionary conservatism, which must be incorporated into models of age and size at maturation
    corecore