160 research outputs found

    Metastable hydrogels from aromatic dipeptides

    Get PDF
    We demonstrate that the well-known self-assembling dipeptide diphenylalanine (FF) and its amidated derivative (FF-NH2) can form metastable hydrogels upon sonication of the dipeptide solutions. The hydrogels show instantaneous syneresis upon mechanical contact resulting in rapid expulsion of water and collapse into a semi-solid gel

    U-Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal

    Get PDF
    The Viseu area is located in the Central Iberian Zone of the Iberian Variscan Belt and hosts numerous post-thickening, collision-related granitoids intruded into upper and middle crustal levels. The present paper reports high precision U-Pb zircon and monazite ages for four plutons of the Viseu area: The syn-kinematic granitoids of Maceira (314±5 Ma), Casal Vasco (311±1 Ma) and Junqueira (307.8±0.7 Ma) and the late-kinematic biotite monzogranites of Cota (306±9 Ma). This points to a synchronous emplacement of the different syn-kinematic plutons shortly followed by the intrusion of the late-kinematic granites and shows that the Upper Carboniferous plutonism occurred within a short time span of ca. 10 million years. The ascent of granite magmas took place after an extensional tectonic event (D2) and is coeval with dextral and sinistral crustal-scale transcurrent shearing (D3). Field and petrographical evidence suggest a narrow time-span between peak T metamorphic conditions and the intrusion of granitic melts which implies very fast uplift rates accommodated through active tectonic exhumation. Magma compositions evolve through time, reflecting an increasing involvement of mid-crustal sources and the underplating effect of an upwelling asthenospheric mantle at the base of a thinning and stretching continental crust. © 2005 Elsevier B.V. All rights reserved

    Tools for Evaluating the Content, Efficacy, and Usability of Mobile Health Apps According to the Consensus-Based Standards for the Selection of Health Measurement Instruments: Systematic Review.

    Get PDF
    BACKGROUND: There are several mobile health (mHealth) apps in mobile app stores. These apps enter the business-to-customer market with limited controls. Both, apps that users use autonomously and those designed to be recommended by practitioners require an end-user validation to minimize the risk of using apps that are ineffective or harmful. Prior studies have reviewed the most relevant aspects in a tool designed for assessing mHealth app quality, and different options have been developed for this purpose. However, the psychometric properties of the mHealth quality measurement tools, that is, the validity and reliability of the tools for their purpose, also need to be studied. The Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN) initiative has developed tools for selecting the most suitable measurement instrument for health outcomes, and one of the main fields of study was their psychometric properties. OBJECTIVE: This study aims to address and psychometrically analyze, following the COSMIN guideline, the quality of the tools that are used to measure the quality of mHealth apps. METHODS: From February 1, 2019, to December 31, 2019, 2 reviewers searched PubMed and Embase databases, identifying mHealth app quality measurement tools and all the validation studies associated with each of them. For inclusion, the studies had to be meant to validate a tool designed to assess mHealth apps. Studies that used these tools for the assessment of mHealth apps but did not include any psychometric validation were excluded. The measurement tools were analyzed according to the 10 psychometric properties described in the COSMIN guideline. The dimensions and items analyzed in each tool were also analyzed. RESULTS: The initial search showed 3372 articles. Only 10 finally met the inclusion criteria and were chosen for analysis in this review, analyzing 8 measurement tools. Of these tools, 4 validated ≥5 psychometric properties defined in the COSMIN guideline. Although some of the tools only measure the usability dimension, other tools provide information such as engagement, esthetics, or functionality. Furthermore, 2 measurement tools, Mobile App Rating Scale and mHealth Apps Usability Questionnaire, have a user version, as well as a professional version. CONCLUSIONS: The Health Information Technology Usability Evaluation Scale and the Measurement Scales for Perceived Usefulness and Perceived Ease of Use were the most validated tools, but they were very focused on usability. The Mobile App Rating Scale showed a moderate number of validated psychometric properties, measures a significant number of quality dimensions, and has been validated in a large number of mHealth apps, and its use is widespread. It is suggested that the continuation of the validation of this tool in other psychometric properties could provide an appropriate option for evaluating the quality of mHealth apps

    Assessment of the quality of mobile applications (Apps) for management of low back pain using the mobile app rating scale (mars)

    Get PDF
    Digital health interventions may improve different behaviours. However, the rapid proliferation of technological solutions often does not allow for a correct assessment of the quality of the tools. This study aims to review and assess the quality of the available mobile applications (apps) related to interventions for low back pain. Two reviewers search the official stores of Android (Play Store) and iOS (App Store) for localisation in Spain and the United Kingdom, in September 2019, searching for apps related to interventions for low back pain. Seventeen apps finally are included. The quality of the apps is measured using the Mobile App Rating Scale (MARS). The scores of each section and the final score of the apps are retrieved and the mean and standard deviation obtained. The average quality ranges between 2.83 and 4.57 (mean 3.82) on a scale from 1 (inadequate) to 5 (excellent). The best scores are found in functionality (4.7), followed by aesthetic content (mean 4.1). Information (2.93) and engagement (3.58) are the worst rated items. Apps generally have good overall quality, especially in terms of functionality and aesthetics. Engagement and information should be improved in most of the apps. Moreover, scientific evidence is necessary to support the use of applied health tools

    Effectiveness of a gamified digital intervention based on lifestyle modification (iGAME) in secondary prevention: a protocol for a randomised controlled trial

    Get PDF
    Introduction Combating physical inactivity and reducing sitting time are one of the principal challenges proposed by public health systems. Gamification has been seen as an innovative, functional and motivating strategy to encourage patients to increase their physical activity (PA) and reduce sedentary lifestyles through behaviour change techniques (BCT). However, the effectiveness of these interventions is not usually studied before their use. The main objective of this study will be to analyse the effectiveness of a gamified mobile application (iGAME) developed in the context of promoting PA and reducing sitting time with the BCT approach, as an intervention of secondary prevention in sedentary patients.Methods and analysis A randomised clinical trial will be conducted among sedentary patients with one of these conditions: non-specific low back pain, cancer survivors and mild depression. The experimental group will receive a 12-week intervention based on a gamified mobile health application using BCT to promote PA and reduce sedentarism. Participants in the control group will be educated about the benefits of PA. The International Physical Activity Questionnaire will be considered the primary outcome. International Sedentary Assessment Tool, EuroQoL-5D, MEDRISK Instruments and consumption of Health System resources will be evaluated as secondary outcomes. Specific questionnaires will be administered depending on the clinical population. Outcomes will be assessed at baseline, at 6 weeks, at the end of the intervention (12 weeks), at 26 weeks and at 52 weeks.Ethics and dissemination The study has been approved by the Portal de Ética de la Investigación Biomédica de Andalucía Ethics Committee (RCT-iGAME 24092020). All participants will be informed about the purpose and content of the study and written informed consent will be completed. The results of this study will be published in a peer-reviewed journal and disseminated electronically and in print.Trial registration number NCT0401911

    The Validity of the Energy Expenditure Criteria Based on Open Source Code through two Inertial Sensors

    Get PDF
    Through this study, we developed and validated a system for energy expenditure calcula-tion, which only requires low-cost inertial sensors and open source R software. Five healthy subjects ran at ten different speeds while their kinematic variables were recorded on the thigh and wrist. Two ActiGraph wireless inertial sensors and a low-cost Bluetooth-based inertial sensor (Lis2DH12), assembled by SensorID, were used. Ten energy expenditure equations were automatically calculated in a developed open source R software (our own creation). A correlation analysis was used to compare the results of the energy expenditure equations. A high interclass correlation coefficient of estimated energy expenditure on the thigh and wrist was observed with an Actigraph and Sensor ID accelerometer; the corrected Freedson equation showed the highest values, and the Santos-Lozano vector magnitude equation and Sasaki equation demonstrated the lowest one. Energy expenditure was compared between the wrist and thigh and showed low correlation values. Despite the positive results obtained, it was necessary to design specific equations for the estimation of energy expenditure measured with inertial sensors on the thigh. The use of the same formula equation in two different placements did not report a positive interclass correlation coefficient

    Reliability Study of Inertial Sensors LIS2DH12 Compared to ActiGraph GT9X: Based on Free Code

    Get PDF
    The study’s purpose was to assess the reliability of the LIS2DH12 in two different positions, using the commercial sensor Actigraph GT9X as a reference instrument. Five participants completed two gait tests on a treadmill. Firstly, both sensors were worn on the wrist and around the thigh. Each test consisted of a 1 min walk for participants to become accustomed to the treadmill, followed by a 2 min trial at ten pre-set speeds. Data from both sensors were collected in real-time. Intraclass correlation coefficient (ICC) was used to evaluate the equality of characteristics obtained by both sensors: maximum peaks, minimum peaks, and the mean of the complete signal (sequence of acceleration values along the time) by each axis and speed were extracted to evaluate the equality of characteristics obtained with LIS2DH12 compared to Actigraph. Intraclass correlation coefficient (ICC) was extracted, and a standard deviation of the mean was obtained from the data. Our results show that LIS2DH12 measurements present more reliability than Actigraph GT9X, ICC > 0.8 at three axes. This study concludes that LIS2DH12 is as reliable and accurate as Actigraph GT9X Link and, therefore, would be a suitable tool for future kinematic studies

    Mitochondria interaction networks show altered topological patterns in Parkinson's disease.

    Get PDF
    Mitochondrial dysfunction is linked to pathogenesis of Parkinson's disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation
    corecore