55 research outputs found

    Hydrophilic antioxidant compounds in orange juice from different fruit cultivars: Composition and antioxidant activity evaluated by chemical and cellular based (Saccharomyces cerevisiae) assays

    Get PDF
    Antioxidant capacity was evaluated by a cellular model (Saccharomyces cerevisiae) and chemical methods (FRAP, TEAC and total phenols by Folin-Ciocalteu assay) in the hydrophilic fraction (phenolic compounds and ascorbic acid) of orange juices (OJs) from six varieties (Midknight, Delta Seedless, Rohde Red, Seedless, Early and clone Sambiasi), harvested in two seasons. The contents of phenolic compounds and ascorbic acid analyzed, respectively, by UPLC and HPLC were 370.04 76.97 mg/L and 52.05 6.69 mg/100 mL. Variety and season significantly influenced (p < 0.05) composition and antioxidant capacity. TEAC and FRAP values correlated well with individual hydrophilic compounds (R2 > 0.991) but no correlation with cellular assay was observed. An increase in survival rates between 23% and 38% was obtained, excepting for two varieties that showed no activity (Rohde Red and Seedless). Narirutin, naringin-d, ferulic acid-d2, didymin, neoeriocitrin and sinapic acid hexose and caffeic acid-d1 were the phenolic compounds which contributed to survival rates (R2 = 0.979, p < 0.01

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Phenolic Compounds in Mesoamerican Fruits—Characterization, Health Potential and Processing with Innovative Technologies

    No full text
    Diets rich in phenolic compounds have been associated to reducing the risk of metabolic syndrome and its derived disorders. Fruits are healthy components of the human diet because of their vitamin, mineral, fiber and phenolic profile. However, they have a short shelf-life which is limited by microbiological growth and enzymatic activity. Innovative preservation methods such as high hydrostatic pressure, pulsed electric fields, ultrasound, microwave, cold plasma and ultraviolet light have become popular for the processing of fruits because they can preserve nutritional quality. In this review, the phenolic profile and health potential of 38 Mesoamerican fruits were assessed. Phenolic compounds were classified based on their contribution to the diet as flavonoids, phenolic acids, tannin, lignins and stilbenoids. Due to this composition, fruits showed a wide range of bioactivities which included anti-inflammatory, anti-diabetic, anti-hypertensive and anti-obesity activities, among others. Phenolic content in fruits submitted to innovative food processing technologies depended on parameters such as enzymatic activity, antioxidant capacity, microstructure integrity and cell viability. Innovative technologies could increase phenolic content while assuring microbiological safety by (i) promoting the release of bound phenolic compounds during processing and (ii) inducing the synthesis of phenolic compounds by activation of phenylpropanoid pathway during storage

    Induced Changes in Aroma Compounds of Foods Treated with High Hydrostatic Pressure: A Review

    No full text
    Since conventional thermal processing can have detrimental consequences on aroma compounds, non-thermal technologies such as high hydrostatic pressure (HHP) have been explored. HHP may alter the weak chemical bonds of enzymes. These changes can modify the secondary, tertiary, and quaternary structures of key enzymes in the production of aroma compounds. This can result in either an increase or decrease in their content, along with reactions or physical processes associated with a reduction of molecular volume. This article provides a comprehensive review of HHP treatment’s effects on the content of lipid-derived aroma compounds, aldehydes, alcohols, ketones, esters, lactones, terpenes, and phenols, on various food matrices of vegetable and animal origin. The content of aldehydes and ketones in food samples increased when subjected to HHP, while the content of alcohols and phenols decreased, probably due to oxidative processes. Both ester and lactone concentrations appeared to decline due to hydrolysis reactions. There is no clear tendency regarding terpenes concentration when subjected to HHP treatments. Because of the various effects of HHP on aroma compounds, an area of opportunity arises to carry out future studies that allow optimizing and controlling the effect

    State-of-the-Art Extraction Methodologies for Bioactive Compounds from Algal Biome to Meet Bio-Economy Challenges and Opportunities

    No full text
    Over the years, significant research efforts have been made to extract bioactive compounds by applying different methodologies for various applications. For instance, the use of bioactive compounds in several commercial sectors such as biomedical, pharmaceutical, cosmeceutical, nutraceutical and chemical industries, has promoted the need of the most suitable and standardized methods to extract these bioactive constituents in a sophisticated and cost-effective manner. In practice, several conventional extraction methods have numerous limitations, e.g., lower efficacy, high energy cost, low yield, etc., thus urges for new state-of-the-art extraction methodologies. Thus, the optimization along with the integration of efficient pretreatment strategies followed by traditional extraction and purification processes, have been the primary goal of current research and development studies. Among different sources, algal biome has been found as a promising and feasible source to extract a broader spectrum of bioactive compounds with point-of-care application potentialities. As evident from the literature, algal bio-products includes biofuels, lipids, polyunsaturated fatty acids, pigments, enzymes, polysaccharides, and proteins. The recovery of products from algal biomass is a matter of constant development and progress. This review covers recent advancements in the extraction methodologies such as enzyme-assisted extraction (EAE), supercritical-fluid extraction (SFE), microwave-assisted extraction (MAE) and pressurized-liquid extraction (PLF) along with their working mechanism for extracting bioactive compounds from algal-based sources to meet bio-economy challenges and opportunities. A particular focus has been given to design characteristics, performance evaluation, and point-of-care applications of different bioactive compounds of microalgae. The previous and recent studies on the anticancer, antibacterial, and antiviral potentialities of algal-based bioactive compounds have also been discussed with particular reference to the mechanism underlying the effects of these active constituents with the related pathways. Towards the end, the information is also given on the possible research gaps, future perspectives and concluding remarks

    High Hydrostatic Pressure to Increase the Biosynthesis and Extraction of Phenolic Compounds in Food: A Review

    No full text
    Phenolic compounds from fruits and vegetables have shown antioxidant, anticancer, anti-inflammatory, among other beneficial properties for human health. All these benefits have motivated multiple studies about preserving, extracting, and even increasing the concentration of these compounds in foods. A diverse group of vegetable products treated with High Hydrostatic Pressure (HHP) at different pressure and time have shown higher phenolic content than their untreated counterparts. The increments have been associated with an improvement in their extraction from cellular tissues and even with the activation of the biosynthetic pathway for their production. The application of HHP from 500 to 600 MPa, has been shown to cause cell wall disruption facilitating the release of phenolic compounds from cell compartments. HPP treatments ranging from 15 to 100 MPa during 10–20 min at room temperature have produced changes in phenolic biosynthesis with increments up to 155%. This review analyzes the use of HHP as a method to increase the phenolic content in vegetable systems. Phenolic content changes are associated with either an immediate stress response, with a consequent improvement in their extraction from cellular tissues, or a late stress response that activates the biosynthetic pathways of phenolics in plants

    Enzymatic Activity and Its Relationships with the Total Phenolic Content and Color Change in the High Hydrostatic Pressure-Assisted Curing of Vanilla Bean (<i>Vanilla planifolia</i>)

    No full text
    Diverse enzymatic reactions taking place after the killing of green vanilla beans are involved in the flavor and color development of the cured beans. The effects of high hydrostatic pressure (HHP) at 50–400 MPa/5 min and blanching as vanilla killing methods were evaluated on the total phenolic content (TPC), polyphenoloxidase (PPO), and peroxidase (POD) activity and the color change at different curing cycles of sweating–drying (C0–C20) of vanilla beans. The rate constants describing the above parameters during the curing cycles were also obtained. The TPC increased from C1 to C6 compared with the untreated green beans after which it started to decrease. The 400 MPa samples showed the highest rate of phenolic increase. Immediately after the killing (C0), the highest increase in PPO activity was observed at 50 MPa (46%), whereas for POD it was at 400 MPa (25%). Both enzymes showed the maximum activity at C1, after which the activity started to decrease. As expected, the L* color parameter decreased during the entire curing for all treatments. An inverse relationship between the rate of TPC decrease and enzymatic activity loss was found, but the relationship with L* was unclear. HHP appears to be an alternative vanilla killing method; nevertheless, more studies are needed to establish its clear advantages over blanching
    • 

    corecore