56 research outputs found

    MOF-mediated synthesis of CuO/CeO2 composite nanoparticles: Characterization and estimation of the cellular toxicity against breast cancer cell line (MCF-7)

    Get PDF
    A copper oxide/cerium oxide nanocomposite (CuO/CeO2, NC) was synthesized via a novel method using a metal–organic framework as a precursor. This nanomaterial was characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering size analysis (DLS), and zeta potential. The PXRD showed the successful synthesis of the CuO/CeO2 NC, in which the 2theta values of 35.55◦ (d = 2.52 Å, 100%) and 38.73◦ (d = 2.32 Å, 96%) revealed the existence of copper (II) oxide. FTIR analysis showed the CeO2, hydroxyl groups, absorbed water, and some residual peaks. The solid phase analysis by FESEM and TEM images showed mean particle sizes of 49.18 ± 24.50 nm and 30.58 ± 26.40 nm, respectively, which were comparable with crystallite size (38.4 nm) obtained from PXRD, but it appears the CuO/CeO2 NC was not evenly distributed and in some areas, showed it was highly agglomerated. The hydrodynamic size (750.5 nm) also showed the agglomeration of the CuO/CeO2 NCs in the solution, which had a negatively charged surface. The CuO/CeO2 NCs showed anti-proliferative activity against human breast cancer cell line (MCF-7) in a dose-and time-dependence way, while affecting normal cells less significantly

    Application of response surface methodology for optimizing the therapeutic activity of ZnO nanoparticles biosynthesized from aspergillus niger

    Get PDF
    In this study, the biosynthesis of zinc oxide nanoparticles using Aspergillus niger (A/ZnO-NPs) is described. These particles have been characterized by UV–Vis spectrum analysis, X-ray powder diffraction, field emission scanning electron microscopy, and transmission electron mi-croscopy. To use this biosynthesized nanoparticle as an antiproliferative and antimicrobial agent, the IC50 value against the breast cancer cell line and inhibition zone against Escherichia coli were used to optimize the effect of two processing factors including dose of filtrate fungi cell and temperature. The biosynthesized A/ZnO-NPs had an absorbance band at 320 nm and spherical shapes. The mean particles size was 35 nm. RSM (response surface methodology) was utilized to investigate the outcome responses. The Model F-value of 12.21 and 7.29 implies that the model was significant for both responses. The contour plot against inhibition zone for temperature and dose showed that if the dose increases from 3.8 to 17.2 µg/mL, the inhibition zone increases up to 35 mm. As an alternative to chemical and/or physical methods, biosynthesizing zinc oxide NPs through fungi extracts can serve as a more facile and eco-friendly strategy. Additionally, for optimization of the processes, the outcome responses in the biomedical available test can be used in the synthesis of ZnO-NPs that are utilized for large-scale production in various medical applications

    Solid Phase Sorption of Phenols on Metals Acetylacetonates

    Get PDF
    The solid phase extraction properties of surface layers of Eu(III), Al(III), Fe(III), Cr(III) acetylacetonates are compared for sorption some phenols and chlorophenols. The effects of the energies of adsorption and complexation on the retention of various sorbates were calculated. GC methods with preconcentration are proposed to evaluate phenols by means of solid-phase extraction on a sorbent with a surface layer of Eu acetylacetonate with extraction effectiveness of 85%

    Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles

    Get PDF
    Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs

    Factors associated with psychological disturbances during the COVID-19 pandemic:Multicountry online study

    Get PDF
    Background: Accumulating evidence suggests that the COVID-19 pandemic has negatively impacted the mental health of individuals. However, the susceptibility of individuals to be impacted by the pandemic is variable, suggesting potential influences of specific factors related to participants' demographics, attitudes, and practices. Objective: We aimed to identify the factors associated with psychological symptoms related to the effects of the first wave of the pandemic in a multicountry cohort of internet users. Methods: This study anonymously screened 13,332 internet users worldwide for acute psychological symptoms related to the COVID-19 pandemic from March 29 to April 14, 2020, during the first wave of the pandemic amidst strict lockdown conditions. A total of 12,817 responses were considered valid. Moreover, 1077 participants from Europe were screened a second time from May 15 to May 30, 2020, to ascertain the presence of psychological effects after the ease down of restrictions. Results: Female gender, pre-existing psychiatric conditions, and prior exposure to trauma were identified as notable factors associated with increased psychological symptoms during the first wave of COVID-19 (P<.001). The same factors, in addition to being related to someone who died due to COVID-19 and using social media more than usual, were associated with persistence of psychological disturbances in the limited second assessment of European participants after the restrictions had relatively eased (P<.001). Optimism, ability to share concerns with family and friends like usual, positive prediction about COVID-19, and daily exercise were related to fewer psychological symptoms in both assessments (P<.001). Conclusions: This study highlights the significant impact of the COVID-19 pandemic at the worldwide level on the mental health of internet users and elucidates prominent associations with their demographics, history of psychiatric disease risk factors, household conditions, certain personality traits, and attitudes toward COVID-19

    Detection of early-universe gravitational-wave signatures and fundamental physics

    Get PDF
    Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal—including inflation, phase transitions, topological defects, as well as primordial black holes—and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.Peer reviewe

    Detection of early-universe gravitational-wave signatures and fundamental physics

    Get PDF
    Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal—including inflation, phase transitions, topological defects, as well as primordial black holes—and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.Peer reviewe

    Report from Working Group 3: Beyond the standard model physics at the HL-LHC and HE-LHC

    Get PDF
    This is the third out of five chapters of the final report [1] of the Workshop on Physics at HL-LHC, and perspectives on HE-LHC [2]. It is devoted to the study of the potential, in the search for Beyond the Standard Model (BSM) physics, of the High Luminosity (HL) phase of the LHC, defined as 33 ab1^{-1} of data taken at a centre-of-mass energy of 14 TeV, and of a possible future upgrade, the High Energy (HE) LHC, defined as 1515 ab1^{-1} of data at a centre-of-mass energy of 27 TeV. We consider a large variety of new physics models, both in a simplified model fashion and in a more model-dependent one. A long list of contributions from the theory and experimental (ATLAS, CMS, LHCb) communities have been collected and merged together to give a complete, wide, and consistent view of future prospects for BSM physics at the considered colliders. On top of the usual standard candles, such as supersymmetric simplified models and resonances, considered for the evaluation of future collider potentials, this report contains results on dark matter and dark sectors, long lived particles, leptoquarks, sterile neutrinos, axion-like particles, heavy scalars, vector-like quarks, and more. Particular attention is placed, especially in the study of the HL-LHC prospects, to the detector upgrades, the assessment of the future systematic uncertainties, and new experimental techniques. The general conclusion is that the HL-LHC, on top of allowing to extend the present LHC mass and coupling reach by 2050%20-50\% on most new physics scenarios, will also be able to constrain, and potentially discover, new physics that is presently unconstrained. Moreover, compared to the HL-LHC, the reach in most observables will, generally more than double at the HE-LHC, which may represent a good candidate future facility for a final test of TeV-scale new physics

    Microplastic in angling baits as a cryptic source of contamination in European freshwaters.

    Get PDF
    High environmental microplastic pollution, and its largely unquantified impacts on organisms, are driving studies to assess their potential entry pathways into freshwaters. Recreational angling, where many anglers release manufactured baits into freshwater ecosystems, is a widespread activity with important socio-economic implications in Europe. It also represents a potential microplastic pathway into freshwaters that has yet to be quantified. Correspondingly, we analysed three different categories of industrially-produced baits ('groundbait', 'boilies' and 'pellets') for their microplastic contamination (particles 700 µm to 5 mm). From 160 samples, 28 microplastics were identified in groundbait and boilies, with a mean concentration of 17.4 (± 48.1 SD) MP kg-1 and 6.78 (± 29.8 SD) mg kg-1, yet no microplastics within this size range were recorded in the pellets. Microplastic concentrations significantly differed between bait categories and companies, but microplastic characteristics did not vary. There was no correlation between microplastic contamination and the number of bait ingredients, but it was positively correlated with C:N ratio, indicating a higher contamination in baits with higher proportion of plant-based ingredients. We thus reveal that bait microplastics introduced accidentally during manufacturing and/or those originating from contaminated raw ingredients might be transferred into freshwaters. However, further studies are needed to quantify the relative importance of this cryptic source of contamination and how it influences microplastic levels in wild fish
    corecore