262 research outputs found

    Intrinsic photoanode band engineering: enhanced solar water splitting efficiency mediated by surface segregation in Ti-doped hematite nanorods

    Full text link
    Band engineering is thoroughly employed nowadays targeting technologically scalable photoanodes for solar water splitting applications. Most often complex and costly recipes are necessary, for average performances. Here we report very simple photoanode growth and thermal annealing, with effective band engineering results. Strongly enhanced photocurrent, of more than 200 %, is measured for Ti-doped hematite nanorods grown from aqueous solutions and annealed under Nitrogen atmosphere, compared to air annealed ones. Oxidized surface states and increased density of charge carriers are found responsible for the enhanced photoelectrochemical activity, as shown by electrochemical impedance spectroscopy and synchrotron X-rays spectromicroscopies. They are found related to oxygen vacancies, acting as n-dopants, and the formation of pseudo- brookite clusters by surface Ti segregation. Spectro-ptychography is used for the first time at Ti L3 absorption edge to isolate Ti chemical coordination arising from pseudo-brookite clusters contribution. Correlated with electron microscopy investigation and Density Functional Theory (DFT) calculations, our data unambiguously prove the origin of the enhanced photoelectrochemical activity of N2-annealed Ti-doped hematite nanorods. Finally, we present here a handy and cheap surface engineering method beyond the known oxygen vacancy doping, allowing a net gain in the photoelectrochemical activity for the hematite-based photoanodes.Comment: 2 parts: first main manuscript with 39 pages, second supplementary informations with 14 page

    Spin State As a Probe of Vesicle Self-Assembly

    Get PDF
    International audienceA novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter approximate to 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking, analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution Of surfactants between the bilayers and the aqueous bulk

    Versatile Phase Transfer Method for the Efficient Surface Functionalization of Gold Nanoparticles: Towards Controlled Nanoparticle Dispersion in a Polymer Matrix

    Get PDF
    In electronic devices based on hybrid materials such as nonvolatile memory elements (NVMEs), it is essential to control precisely the dispersion of metallic nanoparticles (NPs) in an insulating polymer matrix such as polystyrene in order to control the functionality of the device. In this work the incorporation of AuNPs in polystyrene films is controlled by tuning the surface functionalization of the metallic nanoparticles via ligand exchange. Two ligands with different structures were used for functionalization: 1-decanethiol and thiol-terminated polystyrene. This paper presents a versatile method for the modification of gold nanoparticles (AuNPs) with thiol-terminated polystyrene ligands via phase transfer process. An organic colloid of AuNPs (5±1 nm diameter) is obtained by the phase transfer process (from water to toluene) that allows exchanging the ligand adsorbed on AuNPs surface (hydrophilic citrate/tannic acid to hydrophobic thiols). The stability, size distribution, and precise location of modified AuNPs in the polymer matrix are obtained from UV-Vis spectroscopy, dynamic light scattering (DLS), and electron tomography. TEM tomographic 3D imaging demonstrates that the modification of AuNPs with thiol-terminated polystyrene results in homogeneous particle distribution in the polystyrene matrix compared to 1-decanethiol modified AuNPs for which a vertical phase separation with a homogeneous layer of AuNPs located at the bottom of the polymer matrix was observed.This work was supported by FP7-NMP-2010-SMALL-4 Program (“Hybrid Organic/Inorganic Memory Elements for Integration of Electronic and Photonic Circuitry,” HYMEC), Project no. 263073. Eric Gonthier is acknowledged for technical support in the preparation of hybrid thin films. Scientific work was supported by the Polish Ministry of Science and Higher Education Funds for Science in 2011–2014 allocated for the cofunded international project

    Aligned carbon nanotubes catalytically grown on iron-based nanoparticles obtained by laser-induced CVD

    No full text
    International audienceIron-based nanoparticles are prepared by a laser-induced chemical vapor deposition (CVD) process. They are characterized as body-centered Fe and Fe2O3 (maghemite/magnetite) particles with sizes ::;5 and 10 nm, respectively. The Fe particles are embedded in a protective carbon matrix. Both kind of particles are dispersed by spin-coating on SiO2/Si(1 0 0) flat substrates. They are used as catalyst to grow carbon nanotubes by a plasma- and filaments-assisted catalytic CVD process (PE-HF-CCVD). Vertically oriented and thin carbon nanotubes (CNTs) were grown with few differences between the two samples, except the diameter in relation to the initial size of the iron particles, and the density. The electron field emission of these samples exhibit quite interesting behavior with a low turn-on voltage at around 1 V/mm

    Interfacial charge distributions in carbon-supported palladium catalysts

    Get PDF
    Controlling the charge transfer between a semiconducting catalyst carrier and the supported transition metal active phase represents an elite strategy for fine turning the electronic structure of the catalytic centers, hence their activity and selectivity. These phenomena have been theoretically and experimentally elucidated for oxide supports but remain poorly understood for carbons due to their complex nanoscale structure. Here, we combine advanced spectroscopy and microscopy on model Pd/C samples to decouple the electronic and surface chemistry effects on catalytic performance. Our investigations reveal trends between the charge distribution at the palladium–carbon interface and the metal’s selectivity for hydrogenation of multifunctional chemicals. These electronic effects are strong enough to affect the performance of large (~5 nm) Pd particles. Our results also demonstrate how simple thermal treatments can be used to tune the interfacial charge distribution, hereby providing a strategy to rationally design carbon-supported catalysts

    Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer-Tropsch synthesis

    Get PDF
    We report a straightforward preparation method to synthesize hierarchical composite consisting of TiO2-coated multi-walled carbon nanotubes (CNTs) decorating a macroscopic host structure of alpha-Al2O3. The obtained composite possesses moderate specific surface area and very open porous structure, as well as moderate interaction with active sites, which significantly improve the cobalt nanoparticles dispersion and the mass diffusion during the reaction. The Co/TiO2/CNT-alpha-Al2O3 (CoTiCNTA) catalyst is then used in the Fischer-Tropsch synthesis (FTS) process. This hierarchical catalyst achieves a FTS rate to C5+ of 0.80 g(C5+) g(cat)(-1) h(-1) along with a long-chain hydrocarbons (C5+) selectivity of 85%, which can be pointed out as the most outstanding noble promoter-free catalyst for the FTS process. The as-synthesized catalyst also exhibits an extremely high stability as a function of time on stream which is also one of the prerequisites for the development of future FTS catalysts, especially for the Biomass-to-Liquids process where trace amount of impurities and/or moisture could have an impact on the catalyst stability. The present work also introduces a new investigation methodology based on the use of zero field Co-59 NMR, which allows one to map in a precise manner the cobalt active phase distribution and to correlate it with the FTS performance. It is expected that such technique would be extremely helpful for the understanding of the catalyst structure-performance relationship and for future optimization in the FTS process as well as in other fields of investigation where cobalt particles are involved. (C) 2014 Elsevier Inc. All rights reserved

    Insight on Thermal Stability of Magnetite Magnetosomes: Implications for the Fossil Record and Biotechnology

    Get PDF
    Magnetosomes are intracellular magnetic nanocrystals composed of magnetite (Fe3O4) or greigite (Fe3S4), enveloped by a lipid bilayer membrane, produced by magnetotactic bacteria. Because of the stability of these structures in certain environments after cell death and lysis, magnetosome magnetite crystals contribute to the magnetization of sediments as well as providing a fossil record of ancient microbial ecosystems. The persistence or changes of the chemical and magnetic features of magnetosomes under certain conditions in different environments are important factors in biotechnology and paleomagnetism. Here we evaluated the thermal stability of magnetosomes in a temperature range between 150 and 500 °C subjected to oxidizing conditions by using in situ scanning transmission electron microscopy. Results showed that magnetosomes are stable and structurally and chemically unaffected at temperatures up to 300 °C. Interestingly, the membrane of magnetosomes was still observable after heating the samples to 300 °C. When heated between 300 °C and 500 °C cavity formation in the crystals was observed most probably associated to the partial transformation of magnetite into maghemite due to the Kirkendall effect at the nanoscale. This study provides some insight into the stability of magnetosomes in specific environments over geological periods and offers novel tools to investigate biogenic nanomaterials

    Towards nanoprinting with metals on graphene

    Get PDF
    Graphene and carbon nanotubes are envisaged as suitable materials for the fabrication of the new generation of nanoelectronics. The controlled patterning of such nanostructures with metal nanoparticles is conditioned by the transfer between a recipient and the surface to pattern. Electromigration under the impact of an applied voltage stands at the base of printing discrete digits at the nanoscale. Here we report the use of carbon nanotubes as nanoreservoirs for iron nanoparticles transfer on few-layer graphene. An initial Joule-induced annealing is required to ensure the control of the mass transfer with the nanotube acting as a `pen' for the writing process. By applying a voltage, the tube filled with metal nanoparticles can deposit metal on the surface of the graphene sheet at precise locations. The reverse transfer of nanoparticles from the graphene surface to the nanotube when changing the voltage polarity opens the way for error corrections

    Graphene exfoliation in the presence of semiconducting polymers for improved film homogeneity and electrical performances

    Get PDF
    We report on the production of hybrid graphene/semiconducting polymer films in one step procedure by making use of ultrasound-assisted liquid-phase exfoliation of graphite powder in the presence of π-conjugated polymers, i.e. poly(3-hexylthiophene) (P3HT) or poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo-[3,4-c]pyridine] (PCDTPT). The polymers were chosen in view of their different propensity to form crystalline structures, their decoration with alkyl chains that are known to possess high affinity for the basal plane of graphene, the energy levels of their frontier orbitals which are extremely similar to the work function of graphene, and their high electrical performance when integrated in field-effect transistors (FETs). The polymers act as a dispersion-stabilizing agent and prevent the re-aggregation of the exfoliated graphene flakes, ultimately enabling the production of homogeneous bi-component dispersions. The electrical characterization of few-layer graphene/PCDTPT hybrids, when integrated as active layer in bottom-contact bottom-gate FETs, revealed an increase of the field-effect mobility compared to the π-conjugated-based pristine devices, a result which can be attributed to the joint effect of the few-layer graphene sheets and semiconducting polymers improving the charge-transport in the channel of the field-effect transistor. In particular, few-layer graphene/PCDTPT films displayed a 30-fold increase of PCDTPT's mobility if compared to pristine polymer samples. Such findings represent a step forward towards the optimization of graphene exfoliation and processing into electronic devices, as well as towards improved electrical performance in organic-based field-effect transistors

    Morphology and Electronic Properties of Electrochemically Exfoliated Graphene

    Get PDF
    Electrochemically exfoliated graphene (EEG) possesses optical and electronic properties that are markedly different from those of the more explored graphene oxide in both its pristine and reduced forms. EEG also holds a unique advantage compared to other graphenes produced by exfoliation in liquid media: it can be obtained in large quantities in a short time. However, an in-depth understanding of the structure–properties relationship of this material is still lacking. In this work, we report physicochemical characterization of EEG combined with an investigation of the electronic properties of this material carried out both at the single flake level and on the films. Additionally, we use for the first time microwave irradiation to reduce the EEG and demonstrate that the oxygen functionalities are not the bottleneck for charge transport in EEG, which is rather hindered by the presence of structural defects within the basal plane
    corecore