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Abstract 

Electrochemically exfoliated graphene (EEG) possesses optical and electronic properties that 

are markedly different from those of the more explored graphene oxide both in its pristine and 

reduced forms. EEG also holds the unique advantage compared to other graphenes produced by 

exfoliation in liquid media: it can be obtained in large quantities in a short time. However, an in-

depth understanding on the structure-properties relationship of this material is still lacking. In 

this work, we report a physico-chemical characterization of EEG combined with an investigation 

on the electronic properties of this material carried out both at the single flake level and on the 

films. Additionally, we use for the first time microwave irradiation to reduce the EEG and 

demonstrate that the oxygen functionalities are not the bottleneck for charge transport in EEG, 

which is rather hindered by the presence of structural defects within the basal plane. 
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Graphene, a monolayer of carbon atoms arranged in a hexagonal lattice, is the most explored 

two-dimensional (2D) material.1 Graphene is atomically thin, ultra-light, highly transparent, and 

it possesses extraordinary electronic2-3 and thermal properties.4 All these superlatives make 

graphene a promising material for many applications as transparent conducting film,5 as 

electrode in supercapacitors,6-7 as active layer in sensors,8-9 etc.  Nevertheless, the physico-

chemical properties of graphene closely depend on the way it is produced and processed. 

Although the highest quality graphene sheets can be prepared via mechanical exfoliation, i.e. 

through the “scotch-tape” approach, this method is not suitable for mass production to potentially 

enable the employment of graphene in daily life applications and devices. Recently, the 

community perceives an outbreak of new potentially upscalable methods of graphene production. 

Among them, the ultrasound-induced liquid-phase exfoliation (UILPE)10-11 of graphite in the 

absence12 or presence of ad hoc molecules,13-16 and the electrochemical exfoliation (EE) carried 

in a variety of electrolytes17,18-19 are extensively explored as they can be used to produce graphene 

flakes of different sizes, thicknesses and quality. Significantly, while the UILPE makes it 

possible to produce dispersions with the maximum concentration of 1 mg/mL20 and it requires 

long (up to 1000 hours) sonication processes and multi-step post treatments, the 

electrochemically exfoliation allows to generate 1-10 mg/mL dispersions in the time scale 

spanning from minutes to a few hours.21 Interestingly, EE of graphite into graphene can occur 

either under anodic or cathodic conditions.19 While cathodic exfoliation relies on the use of 

lithium or alkylammonium salts dissolved in organic solvents (e.g. propylene carbonate,22 

dimethyl sulfoxide,23 N-methyl-2-pyrrolidone18), the anodic process can be carried out in 

aqueous media. Various aqueous electrolytes17, 24-26 as well as mixtures of water and ionic 

liquids27-28 have been investigated. Among them aqueous electrolytes containing inorganic sulfate 
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salts became extremely popular for their good performance, which results in the high-yield 

exfoliation of graphene sheets.21  

 Owing to the oxidative nature of the anodic exfoliation process, many research groups 

have proposed this method as an alternative to classical Hummers and Staudenmaier methods for 

the production of graphene oxide (GO).29-32 On the other hand, contradicting reports have 

appeared in the last few years17, 24-25, 33-35 in which electrochemical exfoliation of graphite was 

used to produce defect-free graphene sheets at high concentrations. In fact, the oxidation of 

graphene sheets is unavoidable during the anodic EE, and it depends on both the exfoliation time 

and the type of employed electrolyte, which in some cases can prevent the extensive oxidation.33, 

36 While the production of high quantity of defect-free graphene sheets via wet methods attracts 

the attention of both industrial and academic sectors,37 besides the oxidation degree little is 

known on the physico-chemical properties of electrochemically exfoliated graphene (EEG) 

sheets, such as the nature of the defects and electronic properties at the single sheet and film 

level. Although EE in non-aqueous electrolytes prevents the extensive oxidation of graphitic 

material, which characterizes the anodic process, cathodic EE requires time consuming post 

treatments of the exfoliated materials, such as long ultra-sonication, employed to achieve 

compete exfoliation and therefore, has the same drawbacks as UILPE, i.e. low exfoliation yield 

and limited lateral sizes of the flakes (in the range of hundreds of nm)14. Because of this reason, 

current research endeavors are focused on the anodic approach, which, on the contrary, allows 

the one-step production of single- and few-layered graphene sheets in high quantities. In 

particular, it has been shown recently that devices based on the thin EEG film possess a 

maximum hole mobility of ca. 100 cm2 V−1 s−1, whereas single-layer (SL) EEG exhibits a hole 

mobility of ca. 300 cm2 V−1 s−1 and a sheet resistance of 2 kΩ sq-1,17 being comparable to that of 
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undoped CVD-grown graphene (1 kΩ sq−1).38 Such low mobility (if compared to pristine 

graphene)2, 39 has been provisionally attributed to the inter-flakes boundaries, which are 

bottlenecks for charge transport, and to the presence of the oxygen functionalities in the structure 

of the flakes, the latter acting as electronic traps. However, an in-depth analysis on the structure-

properties relationship in EEG, by comparing the electrical characteristics of this 2D material 

measured at the single flake and at the film level, in device with variable oxygen content is 

missing. 

Here we show that the electrochemical exfoliation of graphite foil under the most commonly 

employed anodic conditions,17, 24, 29-30, 34, 36, 40-42 i.e. using ammonium sulfate as electrolyte, not 

only causes the oxidation of the graphitic material, but also results in the structural degradation 

of the sheets. In particular, structural and compositional characterization of the produced material 

corroborated with the investigation on the electronic properties of both SL flakes and films 

provide unambiguous evidence that the electrical characteristics of EEG are not hindered by the 

amount of oxygen functionalities, which can be nearly completely removed upon microwave 

(MW) irradiation, but are rather limited by the presence of structural defects.  

In this work, EEG has been produced under anodic conditions using a simple electrolytic cell 

(see Experimental Section). During the electrolysis, the area of the working electrode, i.e. 

graphite foil, is being reduced determining a variation of the current intensity passing between 

the electrodes. Noteworthy, a prolonged electrolysis in aqueous solution affects the oxidation 

degree of the produced material as observed by following the C/O ratio as a function of the 

electrolysis duration (Figure S1a). In particular, an electrolysis process lasting 1 and 60 min 

results in a C/O ratio of 8 and 4, respectively. Therefore, we decided to focus our attention on the 
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EEG characterized by the highest C/O ratio (C/O = 8), i.e. the material collected after 1 minute 

of electrolysis.  

Such EEG is characterized from the physical-chemical point of view by various microscopic 

and spectroscopic techniques. A fast preliminary investigation can be attained by optical 

microscopy (OM), which allows quick determination of the presence of single- and few-layer 

thick graphene flakes deposited on the SiO2 substrate. Subsequently, an in-depth morphological 

characterization of the exfoliated material is performed. In particular, statistical distributions of 

flake size and thickness are determined by atomic force microscopy (AFM) and high-resolution 

transmission electron microscopy (HR-TEM). Figure 1a displays large single-layer graphene 

(SLG) and few-layer graphene (FLG) sheets. Moreover, in a number of cases folded or wrinkled 

sheets are also monitored, being commonly observed in samples prepared by wet deposition 

methods such as spin-coating. AFM and HR-TEM analyses (Figure S3) reveal a considerable 

fraction of folded SLG sheets with lateral sizes > 1 μm, being a typical characteristic of graphene 

produced via EE.17, 24, 42 The thickness distribution (see Figure 1b) quantified by AFM and HR-

TEM reveals a discrepancy which is a consequence of the intrinsic nature of the measurements. 

In particular, while in the case of HR-TEM the number of layers (N) is counted by analysing the 

folded edges,43 AFM enables the estimation of N by measuring the height of the deposited flakes 

from topographical profiles and dividing it by the graphite interlayer distance. Moreover, it is 

worth noting that the estimation of the height of a SLG via AFM depends on the substrate and on 

the experimental conditions such as relative humidity and magnitude of the force applied by the 

tip to the sample. For example, on SiO2, a SLG can show an apparent height of ca. 1 nm,44 while 

on mica it amounts to ca. 0.4 nm.45 Here, the N is estimated by assuming that the apparent 

thickness of the thinnest graphene sheet observed on our images, amounting to 0.8 nm. 
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Interestingly, all the flakes analysed with AFM are less than 3.2 nm thick; therefore, the thickest 

flakes are considered to be four-layer thick. Both analyses, i.e. AFM and HR-TEM, show that 

EEG is mostly composed by SLG and bi-layer graphene sheets. 

AFM is also employed to gain in-depth insight into the surface morphology of EEG flakes. 

High magnification imaging reveals that the surface of the flakes is damaged and nanoscopic 

holes are observed (Figure 1d). The density of those defects is estimated by automatic pixel 

counting. Such analysis shows that the defective area of the flakes ranges from 4 to 30% (see 

Figure 1e), yet, it does not exceed 10% for the majority of the flakes (67%). 

Several attempts to visualize such structural defects by HR-TEM are done, yet the imaging is 

hindered by a contamination with physisorbed carbonaceous material, which after exposure to 

TEM electron beam converts into amorphous carbon. According with AFM imaging, in fact, 

most of the EEG flakes appear damaged and characterized by rough surfaces. That can be 

interpreted as the result of a non-uniform disintegration of the outer sheets in bi- and tri-layer 

thick flakes due to the complicated interplay of water electrolysis, anionic intercalation, and gas 

evolution that can induce cracks and nanoscopic defects on the material. Therefore, we believe 

that the main source of carbon contamination is represented by the remaining shreds of the 

external graphene layer of an EEG sheet, which are transformed in amorphous carbon under the 

influence of the electron beam. On the other hand, besides the nanoscopic defects observed by 

AFM, the HR-TEM analysis highlights the presence of point defects (Figure S3d). 

The mechanical pressure caused by gas bubbling (O2 and SO2) in between graphite layers during 

the electrolysis is considered the most important factor leading simultaneously to the 

fragmentation and exfoliation of the material. That causes also the spreading of the graphitic 



 8 

material from the anode, even before the complete exfoliation, which in fact is well reflected in 

the heterogeneity over the thickness and sizes of the produced material (Figures 1b and 1c). 

 

 

Figure 1. Statistical thickness and flake size analysis for electrochemically exfoliated 

graphene, together with a statistical study of structural defects caused by the electrochemical 

process. (a) Topographical AFM image of flakes produced by electrochemical exfoliation of 

graphite and deposited on SiO2 substrates by spin-coating from DMF dispersions; (b) distribution 

of the number of layers per sheet determined by AFM cross-sectional analysis (in blue) and HR-

TEM (in red); (c) distribution of flakes lateral size determined by AFM; (d) AFM topographic 
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and phase-contrast images showing structural defects on a representative SLG flake; (e) density 

of the structural defects plotted in function of the number of defective flakes. 

Compositional characterization of the material is carried out by X-ray photoelectron 

spectroscopy (XPS). Firstly the starting materials, i.e. the graphite foil, was analysed, and 

considered as standard, aiming to follow how the chemical composition of the material evolves 

during electrochemical exfoliation (see Figures S1b and S1c). Figure 2a displays a comparison 

between C1s spectra of the starting material and EEG. As previously reported,46 the high-

resolution C1s spectrum of the starting material (Figure 2b), displays an asymmetric peak 

centred at 284.48 eV and a broad “shake-up’’ peak related to the π to π* transition, at ca. 290.9 

eV. No components related to the oxidation of the material is observed, as confirmed by the low 

atomic percentage of oxygen (0.58 %) given from the survey spectra (Figure S1b). After the 

exfoliation, the C1s spectrum of EEG powder (Figure 2c), besides the main peak centred at 

284.45 eV reveals a second component at higher binding energy, which indicates the oxidation 

of the material during the EE. Its deconvolution allows identification of four peaks typically 

attributed to oxygen-containing groups, i.e. hydroxyl (285.47 eV) and epoxide (286.68 eV) 

groups, as well as carbonyl (288.22 eV) and carboxyl (289.08 eV) moieties.47-48 Even though the 

electrochemical process, under anodic conditions, unavoidably oxidizes the material, the level of 

oxidation is much lower if compared with the oxidation degree of GO powder obtained after 

drying a water dispersion of GO, purchased from Graphenea, in a vacuum oven at ca. 30 ˚C 

(Figure 2). Moreover, the content of oxygen, and consequently the C/O ratio determined by XPS, 

is comparable with the results of elemental microanalyses (see Table S1). Further analysis is 

performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 
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and thermogravimetric analysis (TGA), which further corroborates the presence of oxygen 

containing groups (Figures S2a and S2b). 

 

 

Figure 2. XPS characterization of electrochemically exfoliated graphene (EEG) in comparison 

with pristine graphite, graphene oxide (GO) and EEG after microwave irradiation (MW-EEG): 

(a) overlapped high resolution carbon spectra; (b) C1s spectrum of graphite; (c-e) C1s curve 

fitting of EEG, GO and MW-EEG, respectively. 

Raman spectroscopy is used to characterize the quality of the EEG. The dispersions are spin-

coated on SiO2 substrates and the solvent is slowly evaporated at room temperature. Raman 

spectra (Figure S4c) show a disordered material as indicated by the presence of a defective peak 

higher than the G-peak and a very low intense and broad 2D band, providing evidence for a 

reduction of the size of the in-plane sp2 domains subsequently to the anodic process. In 
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particular, ID/IG ratio of EEG (c.a. 1.5) lies in the transition region between stage 1 and 2, defined 

for disordered carbon materials, in which a mean distance between two defects is being 

estimated as Ld ~ 2-4 nm and consist of a low sp3 species (<15%).49 The position of G peak at 

1593 cm-1 further proves the defective nature of EEG, which, in agreement with previous 

reports,49-50 can be defined as nanocristalline graphite. Moreover, an apparent shoulder of the G 

peak, known as D’ peak, can be clearly distinguished, indicating a moderate defect 

concentration.51 Nevertheless, besides the defective flakes, high-quality FLG sheets, with ID/IG of 

0.4, are observed. 

Figure 3a, b illustrates the approach adopted for the electrical characterization of individual EEG 

nanosheets. EEG flakes are deposited on oxidized silicon substrates (ρSi ≈ 0.001 Ω·cm, 

tox = 290 nm) by spin-coating a 1 mg/mL dispersion in dimethylformamide (DMF), and are 

further characterized via a combination of OM and AFM. Multi-terminal back-gated field-effect 

transistors (FETs) are fabricated using e-beam lithography with polymethyl methacrylate 

(PMMA) resists, metal deposition (3/40 nm of Ti/Au) and lift off in acetone. The four-probe 

measurement configuration is employed to remove the contribution of the contact resistance and 

access the intrinsic sheet resistivity of EEG, which is found to span within the range 15-30 

kΩ/sq. To minimize the influence of environmental adsorbates, such as O2 and H2O, all the 

measurements are carried under inert atmosphere (N2-filled glovebox). Moreover, a vacuum-

annealing step (p ~ 5x10-8 mbar, T ~60 °C) is performed to desorb solvent traces, as well as O2 

and H2O, which are known to be detrimental electron-acceptor traps ─ and thus reduce the level 

of hole doping within the material. Upon annealing, the behaviour of the EEG FETs changes 

from unipolar (p-type) to ambipolar, as in the case of mechanically exfoliated or CVD-grown 

graphene devices. A well-defined charge-neutrality point can be identified in the transfer 
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characteristics acquired after vacuum annealing (Figure 3c, inset) at Vg values of ~ 4 V. To the 

best of our knowledge, this is the first observation of ambipolar transport in EEG nanosheets, 

which proves that the level of oxidation in our EEG is considerably lower than in the case of 

graphene oxide (GO). However, at this stage, the electron and hole mobilities (1-10 cm2V-1s-1) 

appear to be dominated by a high degree of structural defects, as elucidated in the following of 

the paper. The field-effect mobilities ─ measured in both two- and four-terminal configuration ─ 

are reported in the histogram in Figure 3d. On average, the two-terminal measurements provide 

mobility values 30-40% lower than the four-terminal counterpart, indicating a non-negligible 

contribution of the contact resistance due to injection barriers at the metal/EEG interface. Upon 

annealing, the hole field-effect mobility drops by ~50%. We suggest two plausible mechanisms 

behind such charge-transport degradation, namely the thermally-activated expansion of structural 

defects52 and the remarkable decrease in hole density (see Supporting Section 4).  
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Figure 3. Electrical transport measurements on individual EEG flakes. (a) Schematics and (b) 

optical micrograph of the multiterminal back-gated FETs used for electrical characterization. The 

scale bar in (b) amounts to 5 µm. (c) Drain-source current (Ids) vs. gate voltage (Vg) transfer 

characteristics of an EEG FET acquired before (blue) and after (red) high-vacuum annealing at 

~60 °C. The curve is plotted also in the inset (magnified y-scale) to show the occurrence of the 

charge neutrality point (VCNP) at ~4V. (d) Histogram of the field-effect mobility for holes (h+) 

and electrons (e-), as measured in the two- and four-terminal measurement configuration. 

Graphene films are then prepared by depositing a few drops of EEG dispersion in DMF into a 

water-containing beaker. Once re-organized at the interface, EEG flakes form a uniform greyish 

film floating onto the sub-phase, which is transferred onto the solid substrate. This method 
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makes it possible to avoid time consuming and laborious purification steps, as a consequence of 

the EEG tendency to form a film at the water/air interface, leaving heavier particles, i.e. 

unexfoliated graphitic material diffusing in the sub-phase together with DMF. Therefore, the 

extensive formation of aggregates typical for other deposition methods such as drop-casting, dip-

coating, spin-coating is avoided. Morphology and homogeneity of the films were investigated by 

OM (Figure S4a) and AFM (Figure 4b). Closely packed EEG sheets form large-area films 

having average thickness of about 3 nm and surface coverage above 80%. Gold source and drain 

electrodes are then evaporated on top of the film. The Ids current is plotted as a function of the 

applied gate potential Vg and the resulting transfer curves are fitted in order to extract the 

mobility values in the linear regime.  

Unlike what is observed in the case of single flake measurements, the electrical performances 

of films recorded before and after thermal annealing result being almost identical, displaying 

mobilities of 3.4 cm² V-1 s-1 and 4 cm² V-1 s-1, respectively. Electrical characterization also reveals 

a large shift in threshold voltage: the Dirac point is now at very high positive gate bias, even 

after annealing. This strong p-doping of the EEG film can be ascribed to the effect of trapped 

adsorbates (oxygen and solvent) between overlapped flakes, which cannot be easily desorbed 

and hamper the emergence of ambipolar transport.  

Nevertheless, a percolation path for charges among adjacent flakes guarantees the conductivity 

of our film and proves the high-quality overlapping among sheets observed by microscopies. 

More importantly, EEG films show similar mobility values to those of the single flake. 

Therefore, albeit the observed mobilities remain below state of the art, our approach offers the 

exciting possibility of producing large-area graphene performing as an ideal large monolayer. 
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Figure 4. Electrical characterization of FETs based on EEG films. (a) Optical microscopy image 

and (b) AFM image of an EEG film; (c) sketch and photograph of the device fabrication on 

graphene films by gold evaporation using the shadow-mask approach; (d) representative transfer 

curves before and after annealing at 60 ºC for 12 h in nitrogen atmosphere. (Vds = 200 mV) 

Recently, microwave (MW) irradiation has been introduced as powerful technique to reduce 

graphene oxide achieving high-quality graphene.53 Typically, (electro)chemical and thermal 

reduction of GO results in a highly defective and still oxidized material,54-57 known as reduced 

graphene oxide (rGO), due to the difficulty of removing stable epoxy and carbonyl groups.58 On 

the contrary, microwave treatments, based on a rapid and localized heating of the sample, causes 
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the desorption of oxygen functional groups as well as the reordering of the carbon atoms within 

the graphene basal plane, leading to defect- and oxygen-free graphene.53 Consequently, 

electronic mobility values rise from 1 cm2/Vs, reported for rGO59-60, to 1000 cm2/Vs after MW 

irradiation.53 

Here, for the first time, this approach is exploited to lower the degree of oxidation on EEG and 

studying the effect on its electronic properties. While a preliminary thermal annealing is 

necessary to increase the conductivity of GO, so that it can absorb microwaves, this step was 

unnecessary in the case of EEG powder, which is successfully reduced upon a few seconds of 

microwaves irradiation with a conventional microwave oven (Figure 2a, green curve). As evident 

from the XPS survey spectra, the overall percentage of oxygen decreases from 12 % to 7 %. In 

particular, the C1s spectrum of EEG powder (Figure 2e) shows a nearly total reduction of epoxy 

and carbonyl groups to hydroxyl ones, as evidenced by the increase in –OH peak intensity. The 

shake-up satellite peak observed at 290.59 eV in MW-EEG spectrum indicates that the 

conjugation of the system is preserved and eventually restored as well. Moreover, the global shift 

of peak-maxima back to lower binding energy after MW irradiation points out the increment of 

the conducting nature of the material. We verified that the approach reported in literature53 

effectively reduces both EEG powder and EGG films on silicon dioxide substrates (Figure S5). 

Surprisingly, when MW treatment is performed on EEG films, no noticeable changes in 

electrical performances are observed (see Figure S4d). While these results can be well explained 

by the Raman spectra on the films EEG before and after MW treatments, which appear very 

similar (Figure S4c), the C1s region of the XPS spectra shows that the MW treatment is 

accompanied with lowering of the peak at ca. 286 eV which is associated to oxygen-containing 

groups (Figure S4b). Although the combination of thermal annealing and microwave irradiation 
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of GO is known to be beneficial to the healing of point defects,53 our nanometer sized structural 

defects cannot be recovered in the same way upon MW. As a result, MW-irradiation is not 

effective in recovering the electronic properties of EEG, which are at this stage limited by the 

presence of structural defects.  

 

In summary, in this work we investigated the correlation between structure and electrical 

characteristics in electrochemically-exfoliated graphene.  

Stable dispersions of graphene were prepared by means of the electrochemical approach using 

ammonium sulphate as electrolyte. We have carried out a multiscale characterization of the 

physico-chemical properties of EEG, in order to cast light onto the factors that influence the 

charge-carrier transport in this material. Taking advantages of the micrometer size of graphene 

flakes, multi-terminal FETs based on single flakes were fabricated allowing measuring mobilities 

of 1-10 cm2V-1s-1 at the single flake level. Such mobilities turned out to be very similar to those 

measured on continuous EEG films. Interestingly, we have reported for the first time the 

emergence of the n-conductivity in EEG upon thermal annealing, leading to an ambipolar 

transport, which may be of interest for the development of logic circuits. We have also showed 

that MW treatments can be successfully exploited on EEG in order to lower the oxygen content, 

enabling to demonstrate that charge transport within EEG is mostly hindered by structural 

defects rather than by oxygen containing defects. Such novel information can be useful for the 

optimization of the graphene’s electrochemical-exfoliation process, which is at present the most 

promising method for the production of high-quality graphene sheets in large quantities and short 

time. 
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Experimental Methods  

 Materials. Graphite foil (Alfa Aesar, 0.5 mm thick) was cut into pieces of 2.5 cm x 8 cm 

and used as anode and source of graphene for electrochemical process, while a platinum wire 

(GoodFellow, diameter of 0.5 mm) was employed as counter electrode. Ammonium sulfate was 

purchased from Sigma Aldrich and used as electrolyte in aqueous solution. N,N-

Dimethylformamide (Sigma Aldrich) was used for preparing graphene dispersions. Substrates 

for characterization and devices preparation were purchased from Fraunhofer Institute and 

consist of n++-Si substrates with 90 (or 290) nm of thermally grown SiO2 as the gate dielectric. 

Electrochemical exfoliation of graphite foil. A simple electrolytic cell was built using few basic 

components such as a platinum wire as cathode and a graphite foil as anode half-immersed in an 

electrolytic solution. The electrolyte was prepared solubilizing in water the stoichiometric 

amount of (NH4)2SO4 needed to reach a concentration of 0.1 M. The working electrode’s 

exfoliation occurs as immediate consequence of the applied voltage between the two electrodes 

e.g. +15 V (ISO-TECH IPS-603 DC power supply), which generate a starting current of ca. 

0.4A. Produced powder was collected by vacuum filtration on PTFE membranes (pores’ 

diameter of 5 µm) and, after several rinsing steps needed to remove salt residuals, it was 

dispersed in DMF by mild sonication for 20 minutes. Such dispersion was kept to decant for 48 h 

in order to promote the sedimentation of un-exfoliated material.  

Sample preparation. All the substrates were cleaned by subsequent ultrasonication in acetone 

and isopropyl alcohol (30 minutes each), in order to wash off the protective photoresist layer, 

and then dried under nitrogen flow. Afterward, the substrates were treated by UV-O3 for 5 

minutes followed by 25 minute of exhaust. The samples for optical microscopy imaging, AFM, 
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Raman and single flakes characterization were prepared by spin-coating onto SiO2 substrates of a 

graphene dispersion at a concentration of 1 mg/mL in DMF. 

EEG films were prepared starting from pristine dispersion in DMF where EEG thin layers are 

well stabilized. Few drops of dispersion were gently spread on water surface. Once re-organized 

at the interface, thin flakes form a uniform greyish film floating onto the sub-phase. The transfer 

was done dipping the SiO2 substrate at 45 degrees in order to fish the film formed at the liquid-

air interface. 

The samples for HR-TEM analysis were prepared by drop-casting on a lacey carbon-coated 

copper grid and drying at room temperature. 

Characterization of produced materials. A preliminary investigation of the samples was 

performed by optical microscopy, followed by morphological characterization by atomic force 

microscopy (AFM). AFM imaging was carried out using a Veeco Dimension 3100 atomic force 

microscope operating on a Nanoscope IV control unit under ambient condition. Topographic and 

phase imaging was performed operating in tapping mode using antimony (n) doped silicon 

cantilever. Thickness and surface coverage of the EEG films were determined by analysis of 

AFM images. 

Optical microscopy images were recorded by Olympus BX51. 

HR-TEM micrographs were taken on a FEI Tecnai F20 TEM equipped with a Schottky emitter 

and operated at 120 keV. The number of graphene layers was estimated from the number of 

(0,0,2) diffraction fringes at the edge of folded graphene sheets. The samples were prepared by 

drop-casting on a lacey carbon copper grid, followed by solvent evaporation. 

XPS analysis were carried out using a Thermo Scientific K-Alpha X-ray photoelectron 

spectrometer equipped with an aluminium X-ray source (energy 1.4866 keV) and working at 
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pressure of 10-8-10-9 mbar in the main chamber. X-ray spot size was settled at 400 µm.  Survey 

spectra were recorded as result of 10 scans with a pass energy of 200.00 eV and a step size of 1 

eV; high-resolution spectra are average of 10 scans with a pass energy of 50.00 eV and a step 

size of 0.1 eV. The material was analysed both in form of powder, after drying it for 48 h in 

dessicator, and as film deposited on native silicon wafers. 

The IR analysis was carried out using infra Rouse Nicolet 6700 with MCT/A detector. The 

material was analysed in form of powder, dried in desiccator. 

Raman spectra were recorded by a Renishaw microscope with a 100x objective, laser excitation 

wavelength of 532 nm and laser power of 1%. The silicon peak at 520.3 cm-1 was took as 

reference for wavenumber calibration. 

Device preparation. Top-contact bottom gate FETs based on EEG film were fabricated 

depositing EEG film on silicon substrates with a 90 (or 230) nm silicon oxide layer and 

evaporating gold electrodes (70 nm thick) on top of graphene film by shadow mask method. 

Multiterminal back-gated field-effect transistors (FETs) based on single flake are fabricated 

using standard e-beam lithography, metal deposition (3/40 nm of Ti/Au) and lift off. 

Electrical characterization. Devices with different channel length (120, 100, 80, 60 µm) between 

source and drain electrodes and W=10,000 µm (oxide thickness = 90 nm) were tested. The 

electrical measurements were performed in glove box under N2 atmosphere. 
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treatment of EEG films (XPS, Raman spectroscopy, electrical characterization). 

 

AUTHOR INFORMATION 

Corresponding Authors 

*(A.C.) E-mail: ciesielski@unistra.fr 

*(P.S.) E-mail: samori@unistra.fr 

Notes 

The authors declare no competing financial interest.  

 

ACKNOWLEDGMENT 

We acknowledge financial support from the IRTG Soft Matter Science, the European 

Commission through the Graphene Flagship (GA-696656), the Agence Nationale de la 

Recherche through the LabEx project Nanostructures in Interaction with their Environment 

(ANR-11-LABX-0058_NIE), the International Center for Frontier Research in Chemistry 

(icFRC) and Polish National Science Center (Grant. No. 2015/18/E/ST5/00188).  

 

 

 

References 
 
(1) Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; 
Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N., et al. Science and Technology Roadmap 
for Graphene, related Two-Dimensional Crystals, and Hybrid Systems. Nanoscale 2015, 7, 4598-
4810. 



 22 

(2) Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, 
L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T., et al. Micrometer-Scale 
Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 2011, 11, 2396-
2399. 
(3) Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; 
Banerjee, S. K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nature 
Nanotech. 2014, 9, 768-779. 
(4) Balandin, A. A. Thermal Properties of Graphene and Nanostructured Carbon Materials. 
Nat. Mater. 2011, 10, 569-581. 
(5) Biswas, S.; Drzal, L. T. A Novel Approach to Create a Highly Ordered Monolayer Film 
of Graphene Nanosheets at the Liquid-Liquid Interface. Nano Lett. 2009, 9, 167-172. 
(6) Wu, Z. S.; Liu, Z. Y.; Parvez, K.; Feng, X. L.; Müllen, K. Ultrathin Printable Graphene 
Supercapacitors with AC Line-Filtering Performance. Adv. Mater. 2015, 27, 3669-3675. 
(7) Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, 
R. S.; Pellegrini, V. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for 
Energy Conversion and Storage. Science 2015, 347, 1246501. 
(8) Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; 
Novoselov, K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 
2007, 6, 652-655. 
(9) Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene Based 
Electrochemical Sensors and Biosensors: A Review. Electroanal 2010, 22, 1027-1036. 
(10) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. 
T.; Holland, B.; Byrne, M.; Gun'ko, Y. K., et al. High-Yield Production of Graphene by Liquid-
Phase Exfoliation of Graphite. Nat. Nanotechnol. 2008, 3, 563-568. 
(11) Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, 
F. M.; De, S.; Wang, Z. M.; McGovern, I. T., et al. Liquid Phase Production of Graphene by 
Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 2009, 131, 3611-3620. 
(12) Du, W. C.; Jiang, X. Q.; Zhu, L. H. From Graphite to Graphene: Direct Liquid-Phase 
Exfoliation of Graphite to Produce Single- and Few-Layered Pristine Graphene. J. Mater. Chem. 
A 2013, 1, 10592-10606. 
(13) Ciesielski, A.; Samorì, P. Graphene via Sonication assisted Liquid-Phase Exfoliation. 
Chem. Soc. Rev. 2014, 43, 381-398. 
(14) Ciesielski, A.; Samorì, P. Supramolecular Approaches to Graphene: From Self-Assembly 
to Molecule-Assisted Liquid-Phase Exfoliation. Adv. Mater. 2016, 28, 6030-6051. 
(15) Ciesielski, A.; Haar, S.; El Gemayel, M.; Yang, H. F.; Clough, J.; Melinte, G.; Gobbi, M.; 
Orgiu, E.; Nardi, M. V.; Ligorio, G., et al. Harnessing the Liquid-Phase Exfoliation of Graphene 
Using Aliphatic Compounds: A Supramolecular Approach. Angew. Chem. Int. Ed. 2014, 53, 
10355-10361. 
(16) Du, W. C.; Lu, J.; Sun, P. P.; Zhu, Y. Y.; Jiang, X. Q. Organic Salt-Assisted Liquid-
Phase Exfoliation of Graphite to Produce High-Quality Graphene. Chem. Phys. Lett 2013, 568, 
198-201. 
(17) Parvez, K.; Wu, Z. S.; Li, R. J.; Liu, X. J.; Graf, R.; Feng, X. L.; Müllen, K. Exfoliation 
of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc. 2014, 
136, 6083-6091. 



 23 

(18) Cooper, A. J.; Wilson, N. R.; Kinloch, I. A.; Dryfe, R. A. W. Single Stage 
Electrochemical Exfoliation Method for the Production of Few-Layer Graphene via Intercalation 
of Tetraalkylammonium Cations. Carbon 2014, 66, 340-350. 
(19) Abdelkader, A. M.; Cooper, A. J.; Dryfe, R. A. W.; Kinloch, I. A. How to Get Between 
the Sheets: a Review of Recent Works on the Electrochemical Exfoliation of Graphene Materials 
from Bulk Graphite. Nanoscale 2015, 7, 6944-6956. 
(20) Coleman, J. N. Liquid Exfoliation of Defect-Free Graphene. Acc. Chem. Res. 2013, 46, 
14-22. 
(21) Yang, S.; Lohe, M. R.; Müllen, K.; Feng, X. L. New-Generation Graphene from 
Electrochemical Approaches: Production and Applications. Adv. Mater. 2016, 28, 6213-6221. 
(22) Xia, Z. Y.; Giambastiani, G.; Christodoulou, C.; Nardi, M. V.; Koch, N.; Treossi, E.; 
Bellani, V.; Pezzini, S.; Corticelli, F.; Morandi, V., et al. Synergic Exfoliation of Graphene with 
Organic Molecules and Inorganic Ions for the Electrochemical Production of Flexible Electrodes. 
Chempluschem 2014, 79, 439-446. 
(23) Abdelkader, A. M.; Kinloch, I. A.; Dryfe, R. A. W. Continuous Electrochemical 
Exfoliation of Micrometer-Sized Graphene Using Synergistic Ion Intercalations and Organic 
Solvents. ACS Appl. Mater. Interfaces 2014, 6, 1632-1639. 
(24) Parvez, K.; Li, R. J.; Puniredd, S. R.; Hernandez, Y.; Hinkel, F.; Wang, S. H.; Feng, X. 
L.; Müllen, K. Electrochemically Exfoliated Graphene as Solution-Processable, Highly 
Conductive Electrodes for Organic Electronics. ACS Nano 2013, 7, 3598-3606. 
(25) Chen, C. H.; Yang, S. W.; Chuang, M. C.; Woon, W. Y.; Su, C. Y. Towards the 
Continuous Production of High Crystallinity Graphene via Electrochemical Exfoliation with 
Molecular in Situ Encapsulation. Nanoscale 2015, 7, 15362-15373. 
(26) Xia, Z. Y.; Pezzini, S.; Treossi, E.; Giambastiani, G.; Corticelli, F.; Morandi, V.; Zanelli, 
A.; Bellani, V.; Palermo, V. The Exfoliation of Graphene in Liquids by Electrochemical, 
Chemical, and Sonication-Assisted Techniques: A Nanoscale Study. Adv. Funct. Mater. 2013, 
23, 4684-4693. 
(27) Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. One-Step Ionic-Liquid-
Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly 
from Graphite. Adv. Funct. Mater. 2008, 18, 1518-1525. 
(28) Najafabadi, A. T.; Gyenge, E. High-Yield Graphene Production by Electrochemical 
Exfoliation of Graphite: Novel Ionic Liquid (IL)-Acetonitrile Electrolyte with Low IL Content. 
Carbon 2014, 71, 58-69. 
(29) Ambrosi, A.; Pumera, M. Electrochemically Exfoliated Graphene and Graphene Oxide 
for Energy Storage and Electrochemistry Applications. Chem. Eur. J. 2016, 22, 153-159. 
(30) Sevilla, M.; Ferrero, G. A.; Fuertes, A. B. Aqueous Dispersions of Graphene from 
Electrochemically Exfoliated Graphite. Chem.Eur. J. 2016, 22, 17351-17358. 
(31) Liu, J. L.; Yang, H. P.; Zhen, S. G.; Poh, C. K.; Chaurasia, A.; Luo, J. S.; Wu, X. Y.; 
Yeow, E. K. L.; Sahoo, N. G.; Lin, J. Y., et al. A Green Approach to the Synthesis of High-
Quality Graphene Oxide Flakes via Electrochemical Exfoliation of Pencil Core. RSC Adv. 2013, 
3, 11745-11750. 
(32) Abdelkader, A. M.; Kinloch, I. A.; Dryfe, R. A. W. High-Yield Electro-Oxidative 
Preparation of Graphene Oxide. Chem. Commun. 2014, 50, 8402-8404. 
(33) Yang, S.; Bruller, S.; Wu, Z. S.; Liu, Z. Y.; Parvez, K.; Dong, R. H.; Richard, F.; Samorì, 
P.; Feng, X. L.; Müllen, K. Organic Radical-Assisted Electrochemical Exfoliation for the 
Scalable Production of High-Quality Graphene. J. Am. Chem. Soc. 2015, 137, 13927-13932. 



 24 

(34) Munuera, J. M.; Paredes, J. I.; Villar-Rodil, S.; Ayan-Varela, M.; Pagan, A.; Aznar-
Cervantes, S. D.; Cenis, J. L.; Martinez-Alonso, A.; Tascon, J. M. D. High Quality, Low Oxygen 
Content and Biocompatible Graphene Nanosheets Obtained by Anodic Exfoliation of Different 
Graphite types. Carbon 2015, 94, 729-739. 
(35) Liu, J. L.; Poh, C. K.; Zhan, D.; Lai, L. F.; Lim, S. H.; Wang, L.; Liu, X. X.; Sahoo, N. 
G.; Li, C. M.; Shen, Z. X., et al. Improved Synthesis of Graphene Flakes from the Multiple 
Electrochemical Exfoliation of Graphite Rod. Nano Energy 2013, 2, 377-386. 
(36) Munuera, J. M.; Paredes, J. I.; Villar-Rodil, S.; Ayan-Varela, M.; Martinez-Alonso, A.; 
Tascon, J. M. D. Electrolytic Exfoliation of Graphite in Water with Multifunctional Electrolytes: 
en Route towards High Quality, Oxide-Free Graphene Flakes. Nanoscale 2016, 8, 2982-2998. 
(37) Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z. P.; Colombo, L.; Ferrari, A. C. 
Production and Processing of Graphene and 2d Crystals. Mater. Today 2012, 15, 564-589. 
(38) Kholmanov, I. N.; Magnuson, C. W.; Aliev, A. E.; Li, H. F.; Zhang, B.; Suk, J. W.; 
Zhang, L. L.; Peng, E.; Mousavi, S. H.; Khanikaev, A. B., et al. Improved Electrical 
Conductivity of Graphene Films Integrated with Metal Nanowires. Nano Lett. 2012, 12, 5679-
5683. 
(39) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; 
Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 
2004, 306, 666-669. 
(40) Yu, P.; Tian, Z. M.; Lowe, S. E.; Song, J. C.; Ma, Z. R.; Wang, X.; Han, Z. J.; Bao, Q. L.; 
Simon, G. P.; Li, D., et al. Mechanically-Assisted Electrochemical Production of Graphene 
Oxide. Chem. Mater. 2016, 28, 8429-8438. 
(41) Hsieh, C. T.; Hsueh, J. H. Electrochemical Exfoliation of Graphene Sheets from a 
Natural Graphite flask in the presence of sulfate ions at different temperatures. RSC Adv. 2016, 
6, 96015-96015. 
(42) Su, C. Y.; Lu, A. Y.; Xu, Y. P.; Chen, F. R.; Khlobystov, A. N.; Li, L. J. High-Quality 
Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011, 5, 2332-2339. 
(43) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, 
S.; Jiang, D.; Novoselov, K. S.; Roth, S., et al. Raman Spectrum of Graphene and Graphene 
Layers. Phys. Rev. Lett. 2006, 97, 187401. 
(44) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. 
V.; Geim, A. K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 
10451-10453. 
(45) Valles, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, 
L.; Monthioux, M.; Penicaud, A. Solutions of Negatively Charged Graphene Sheets and 
Ribbons. J.  Am. Chem. Soc. 2008, 130, 15802-15804. 
(46) Briggs, D.; Riviere, J. C. Practical Surface Analysis: By Auger and X-ray Photoelectron 
Spectroscopy. Wiley New York: Chichester, 1983. 
(47) Hsiao, M. C.; Liao, S. H.; Yen, M. Y.; Teng, C. C.; Lee, S. H.; Pu, N. W.; Wang, C. A.; 
Sung, Y.; Ger, M. D.; Ma, C. C. M., et al. Preparation and Properties of a Graphene Reinforced 
Nanocomposite Conducting Plate. J. Mater. Chem. 2010, 20, 8496-8505. 
(48) Park, S.; An, J. H.; Piner, R. D.; Jung, I.; Yang, D. X.; Velamakanni, A.; Nguyen, S. T.; 
Ruoff, R. S. Aqueous Suspension and Characterization of Chemically Modified Graphene 
Sheets. Chem. Mater. 2008, 20, 6592-6594. 
(49) Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered and 
Amorphous Carbon. Phys. Rev. B 2000, 61, 14095-14107. 



 25 

(50) Cancado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; 
Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying Defects in 
Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190-
3196. 
(51) Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; 
Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 
2012, 12, 3925-3930. 
(52) Annett, J.; Cross, G. L. W. Self-Assembly of Graphene Ribbons by Spontaneous Self-
Tearing and Peeling from a Substrate. Nature 2016, 535, 271-275. 
(53) Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; 
Chhowalla, M. High-Quality Graphene via Microwave Reduction of Solution-Exfoliated 
Graphene Oxide. Science 2016, 353, 1413-1416. 
(54) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene 
Oxide. Chem. Soc. Rev. 2010, 39, 228-240. 
(55) Larciprete, R.; Fabris, S.; Sun, T.; Lacovig, P.; Baraldi, A.; Lizzit, S. Dual Path 
Mechanism in the Thermal Reduction of Graphene Oxide. J. Am. Chem. Soc. 2011, 133, 17315-
17321. 
(56) Liu, L.; Tan, C. L.; Chai, J. W.; Wu, S. X.; Radko, A.; Zhang, H.; Mandler, D. 
Electrochemically "Writing" Graphene from Graphene Oxide. Small 2014, 10, 3555-3559. 
(57) Chen, J.; Shepherd, R. L.; Razal, J. M.; Huang, X.; Zhang, W. M.; Zhao, J.; Harris, A. T.; 
Wang, S.; Minett, A. I.; Zhang, H. Scalable Solid-Template Reduction for Designed Reduced 
Graphene Oxide Architectures. ACS Appl. Mater. Interfaces 2013, 5, 7676-7681. 
(58) Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural 
Evolution during the Reduction of Chemically Derived Graphene Oxide. Nat. Chem. 2010, 2, 
581-587. 
(59) Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of 
Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 
2, 463-470. 
(60) Wang, S.; Ang, P. K.; Wang, Z. Q.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P. High 
Mobility, Printable, and Solution-Processed Graphene Electronics. Nano Lett. 2010, 10, 92-98. 

 

 


