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Abstract 

We report on the production of hybrid graphene/semiconducting polymer films in one step 

procedure by making use of ultrasound-assisted liquid-phase exfoliation of graphite powder in 

the presence of π-conjugated polymers, i.e. poly(3-hexylthiophene) (P3HT) or poly[4-(4,4-

dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo-[3,4-

c]pyridine] (PCDTPT). The polymers were chosen in view of their different propensity to 

form crystalline structures, their decoration with alkyl chains that are known to possess high 

affinity for the basal plane of graphene, the energy levels of their frontier orbitals which are 

extremely similar to the work function of graphene, and their high electrical performance 

when integrated in field-effect transistors (FETs). The polymers act as a dispersion-stabilizing 

agent and prevent the re-aggregation of the exfoliated graphene flakes, ultimately enabling the 

production of homogeneous bi-component dispersions. The electrical characterization of few-

layer graphene/PCDTPT hybrids, when integrated as active layer in bottom-contact bottom-

gate FETs, revealed an increase of the field-effect mobility compared to the π-conjugated-

based pristine devices, a result which can be attributed to the joint effect of the few-layer 

graphene sheets and semiconducting polymers improving the charge-transport in the channel 

of the field-effect transistor. In particular, few-layer graphene/PCDTPT films displayed a 30-

fold increase of PCDTPT’s mobility if compared to pristine polymer samples. Such findings 

represent a step forward towards the optimization of graphene exfoliation and processing into 

electronic devices, as well as towards improved electrical performance in organic-based field-

effect transistors. 
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Graphene is a unique material holding outstanding physical properties,[1-4] which makes it 

interesting for a plethora of technological applications, e.g. in medicine,[5-7] flexible 

electronics[3, 8] and photonics,[4, 9, 10]. Such unique properties have been established on 

graphene produced by scotch tape or chemical vapour deposition (CVD), being both hardly 

up-scalable methods, thereby hampering any technological applications. Yet, graphene 

produced using milder and up-scalable strategies such as liquid-phase exfoliation, feature 

several drawbacks: (i) the yield of exfoliation, i.e. the amount of graphene that can be brought 

into a liquid media, is low, (ii) the electrical performance of the liquid-phase exfoliated 

graphene is modest, (iii) the deposition of the exfoliated graphene on surfaces into continuous 

monolayers is rather difficult.[11, 12] On the other hand, organic semiconductors (OSCs), 

while performing well but not flawlessly in terms of electrical performances (usually with a 

high Ion/Ioff but modest mobility) have a different set of advantages, including the tunability of 

their physical properties via chemical functionalization,[13, 14] their reduced cost of 

processing[15, 16] in advantageous conditions (low temperature and ambient pressure), and 

their suitability for up-scalable processes even on flexible supports.[17] Graphene would 

benefit greatly from these characteristics, and because of this reason several attempts of 

combining these two types of materials have been reported in the literature.[18-25] These 

include multi-step procedures based on the subsequent deposition of a graphene and the 

polymeric semiconductor via spin-coating, ink-jet printing or thermal evaporation.[22, 23, 26] 

In particular, Torrisi and co-workers fabricated the active channel of a transistor by successive 

printing of graphene ink and poly[5,5′-bis(3-dodecyl-2-thienyl)-2,2′-bithiophene (PQT-12), 

reaching high electrical performances (mobility of 100 cm²/Vs).[26]  

These approaches relied on the thermal annealing of the graphene film prior to the deposition 

of the OSC, being an effective strategy for the removal of the high boiling point solvent used 

for graphene exfoliation, and for fine-tuning of the graphene ionization energy before the 

OSC deposition by thermal annealing in air. However, they lack in terms of ease of 
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processing; moreover, the structural and electronic interactions between graphene and OSC is 

limited due to the face-to-face geometry of their interface, as the resulting active channel 

consists of two separate sandwiched layers. Aiming at achieving a greater electronic cross talk 

between the two components, previous attempts to hybrid organic/graphene film fabrication 

relied on blending graphene and OSCs in order to achieve higher performances.[18, 24, 25] In 

particular, it was recently demonstrated that liquid-phase exfoliated graphene can be co-

deposited with a polymeric semiconductor and used in thin-film transistors in order to boost 

the ambipolar character of the polymer.[18] While this method is interesting, it does suffer 

from several drawbacks, including phase segregation between the two components,[18] 

graphene random aggregation,[19] crystallinity loss in the semiconductor matrix[20] and poor 

control over graphene deposition.[21]  

 One interesting approach could rely on the simultaneous blending of the OSCs with 

graphene during sonication-assisted exfoliation of graphite powder into graphene nanosheets, 

with OSCs acting as a dispersion stabilizing agents (DSAs) and preventing the re-aggregation 

of the exfoliated graphene flakes, ultimately enabling the production of homogeneous bi-

component dispersions. This approach aims at exploiting the common strategy of adding 

DSAs to graphite dispersion before the exfoliation as a method for enhancing the exfoliation 

yield and stabilizing the graphene sheets in the solution.[27, 28] Moreover, unlike for the case 

of surfactants or small ad hoc molecules, polymers present in the dispersion will not need to 

be removed after the exfoliation, as they will be beneficial for charge transport properties of 

the hybrid material. For optimal performances, the most suitable polymer should be chosen in 

view of its structure, capacity to transport charges and energetic levels close to the work 

function of the graphene, i.e. around 5.0 eV.[18] 

Here we show that the addition of the two p-type semiconductors, i.e. poly(3-hexylthiophene) 

(P3HT) or poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-

[1,2,5]thiadiazolo-[3,4-c]pyridine] (PCDTPT) during the ultrasound-assisted liquid-phase 
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exfoliation process of graphite in o-DCB results in improved exfoliation towards the 

formation of a few-layer graphene (FLG). The electrical characterization of the resulting 

hybrid films revealed a strong improvement of electrical performances in the case of hybrid 

FLG/PCDTPT films compared to its pristine components.   

 We have focused our attention on P3HT and PCDTPT, two p-type OSCs (Figure 1). 

Both polymers possess similar HOMO level, 4.96 eV and 5.16 eV for P3HT and PCDTPT 

respectively (see Table 1), being close to the work function of graphene (4.94 eV, see Figure 

S16). Yet, these two polymers strongly differ in molecular arrangement in the solid state. The 

specific features of P3HT such as alkyl side chains and high molecular planarity enables its 

crystallization into domains possessing relatively high charge carrier mobilities[29], thereby 

making P3HT a prototypical p-type polymer semiconductor. For regioregular P3HT, the 

interplay of strong π- π stacking between adjacent core moieties and interdigitation of hexyl 

side chains belonging to neighbouring molecules favours the polymer-polymer 

interactions/stacking to form crystalline lamellae which may hinder the inter-mixing with 

graphene flakes. On the other hand, PCDTPT exhibits a limited planarity which determines a 

tendency to form amorphous structures both at the nano- and meso-scale. It features longer 

alkyl chains compared to P3HT, yielding a higher affinity for the basal plane of 

graphite/graphene[27, 30]. Moreover, the amorphous structure of PCDTPT and its rigid 

backbone is particularly well suited for intermixing with graphene nanosheets. 

Few-Layer Graphene (FLG) and polymer composites were prepared by ultrasound-assisted 

liquid-phase exfoliation of synthetic graphite flakes[31] in 1,2-orthodichlorobenzene (o-DCB) 

in the presence of P3HT or PCDTPT. The choice of o-DCB is based on several criteria and 

the most important for our case study are: i) its surface tension of 36.6 mJ m−2 [32] makes it 

good candidate for the graphite exfoliation,[33] and ii) it is a good solvent for both P3HT[34] 

and PCDTPT.[35] Dispersions consisting of the polymers (5 mg/mL) and graphite powder 

(50 mg/mL) have been exposed for 6 hours to ultrasounds using a cup horn sonicator at a 
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frequency of 5 Hz (power of 50 W) in order to avoid both the degradation of the polymers and 

radical formation of the solvent molecules.[36] We have opted to use a high relative amount 

of graphite in order to produce high graphene-content films leading to a maximal impact of 

graphene in the electrical performances of the hybrid film. The electrical performances of the 

composites were studied by spin-coating dispersions of few-layer graphene/polymer as thin 

active films in the channel of a bottom-contact bottom-gate FETs with channel length L = 20 

µm, supported on SiO2. Since the aim of the study was not the optimization of the organic 

semiconductor performances through interface engineering, but rather the improvement of 

organic semiconductor performances through addition of few-layer graphene, pristine 

dielectric surface has been used without rendering it hydrophobic via octadecyltrichlorosilane 

(OTS) treatment. Moreover, o-DCB has been used as a solvent since it is compatible with 

graphene exfoliation processes and results in sub-par electrical performances. In order to 

evaluate the impact of graphene on the performance of OSC polymers a series of control 

experiments have been performed. In particular, control samples, i.e. mono-component films 

consisting of neat polymer (either P3HT or PCDTPT) and few-layer graphene (exfoliated in 

the absence of polymers), were prepared by spin-coating 150 µL solutions/dispersions in o-

DCB at the concentration of 5 mg/mL and 50 mg/mL, respectively.  

Figure 2a-f displays the morphology of these films as mapped by optical microscopy (OM) 

and atomic force microscopy (AFM). The obtained values of field-effect mobilities, Ion/Ioff 

ratios and Root-Mean-Square Roughness (RRMS) values are presented in Table 2. While the 

spin-coated films of both polymeric semiconductors exhibit smooth and homogeneous 

morphologies (RRMS = 1-6 nm) as determined on AFM images sized 5*5 µm2, the adsorption 

of graphene inks on solid substrates yields less homogeneous films featuring large aggregates 

that can reach tens of µm in lateral size (Figure 2a). The latter is in part due to the exfoliation 

process being performed by means of a cup horn sonicator. Such apparatus, when compared 

with the conventional ultrasonic baths, allows operating at low frequency, thereby avoiding 
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the extensive damaging of the materials during the exfoliation process, and it offers a more 

homogeneous ultrasound environment. Yet, the quality of the material exfoliated in the 

absence of OSCs is relatively poor as evidenced by the presence of aggregates of multi-layer 

graphene (MLG) and large un-exfoliated graphite particles observed by high-resolution 

transmission electron microscopy (HR-TEM) imaging as well (Figures S1, S3). The low 

quality of the films in terms of huge aggregates and inhomogeneous morphology can be 

ascribed also to other factors, including to the exfoliation carried out starting from a high 

concentration of graphite powder (50 mg/mL), the employed deposition method, i.e. spin-

coating, and the modest interaction of the material with the SiO2 substrate. Figure 2g-i report 

the electrical characterization performed on each type of mono-component film. FLG films 

exhibited its typical electrical characteristics lacking a semiconducting behaviour. Such a 

result can be ascribed to the presence of the graphite aggregates larger than the inter-

electrodic channel and to the absence of bandgap in graphene. On the other hand, neat films 

of P3HT and PCDTPT revealed a semiconducting behaviour when spin-coated on a SiO2 

surface. In particular, the bottom-contact bottom-gate transistors exhibited p-type field-effect 

mobility around 10-2 and 4×10-3 cm²/Vs for P3HT and PCDTPT respectively and Ion/Ioff 

exceeding 104 for both of them.  

We have then focussed our attention to the electrical performance of the hybrid materials. 150 

µL of each solution were spin-coated without additional purification steps or after filtering by 

using a filter with pore sizes of either 5 µm or 0.45 µm. AFM height images of the films and 

transfer curves of the characterized field-effect transistors are displayed in Figure 3. 

Noteworthy, typically the dispersions of single component 2D materials produced through 

liquid-phase exfoliation are not used directly, but only after purification or separation of the 

exfoliated flakes from the un-exfoliated material, e.g. by ultracentrifugation [37]. However, in 

the present case, single or multiple steps of centrifugation can lead to the occurrence of phase 

separation between graphene and conjugated polymers. To circumvent this problem, large 
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unexfoliated graphene aggregates have been removed by simple filtration of dispersions using 

polytetrafluoroethylene filters. A 5 µm filter was selected in order to keep in the dispersion 

only graphene flakes with a size just slightly smaller than the channel length (20 µm) (Figure 

3b,e) while keeping the polymer “intact”. The 0.45 µm filter was selected in order to retain in 

the dispersion only the smallest FLG flakes (Figure 3c,f) that may also act as small seed for 

the polymer crystallization. Films produced from filtered FLG dispersions (5 µm and 0.45 

µm), i.e. exfoliated in the absence of the polymers, were also characterized by optical 

microscopy, AFM and by exploring their electrical properties (Figure S1). Optical 

microscopy and AFM show that only a low quantity of graphitic particles can be deposited by 

spin-coating after filtration, particularly in the case of 0.45 µm filter where neither film 

formation nor the presence of graphitic particles on SiO2 substrate has been observed by 

optical microscopy (AFM image is not shown). Consequently, due to the absence of a 

continuous percolation path for the charges to move from the source to the drain electrode, 

any (semi-)conducting behaviour has been measured. This provides evidence for the difficulty 

of processing FLG solutions into homogeneous films. 

 In the case of the as-produced, i.e. unfiltered, few-layer graphene/P3HT solutions, the 

resulting films featured electrical characteristics which are similar to those of the graphene 

films, i.e. it does not exhibit any semiconducting behavior (Figure 3g). OM and AFM images 

confirm the assumption that graphene aggregates remain large enough to bridge the electrodes 

when the solution is not filtered (Figure 3a,d). However, an improvement in the homogeneity 

of the film is observed (RRMS (graphene) = 14.5 nm; RRMS (graphene:P3HT) = 13.4 nm, as 

determined on AFM images sized 3*3 µm2), indicating that the bi-component approach to 

graphene deposition leads to a slightly more favorable deposition. Compared to the samples 

of neat FLG films, AFM characterization of material produced in the presence of P3HT 

(Figure 3a,d) showed the absence of large un-exfoliated flakes, which indicates clear 

improvement of the exfoliation. Together with fragmented graphite flakes, AFM imaging 
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shows the presence of flat and well-defined few-layered graphene flakes which, furthermore, 

offer a good coverage of the substrate thanks to the unifying presence of the polymer. Once 

filtered through 5 µm membrane, a very homogeneous film can be observed with a great 

amount of µm-sized multi-layer graphene flakes located all over the sample (Figure 3b,e). 

However, AFM height images evidenced the absence of thin flakes and mostly graphitic 

particles smaller than 1 µm are visible. Therefore, the electrical performances are not 

modified compared to a pristine P3HT film (mobility of 0.01 cm²/Vs, Ion/Ioff of 105). 

Considering Ion/Ioff close to 1 and the high off-current observed previously in the graphitic 

material (Figure 2g), the recovery of the electrical performances of P3HT (high Ion/Ioff, low 

off-current, Figures 2h and 3h), indicates the absence of a continuous pathway of graphitic 

material in the channel of the transistor. When the solution was filtered using a 0.45 µm filter, 

a very homogeneous film was produced (Figure 3c,f) but field-effect mobilities were lowered 

by a factor of 3 (Figure 3i; µ = 3 × 10-3 cm²/Vs, Ion/Ioff over 105). 

 Structural characterization of the films based on neat P3HT blended with graphite, was 

performed by X-ray diffraction in specular and grazing incidence geometries. They revealed 

that both the solution filtering and the graphite introduction affect the morphology and the 

polymer aggregation inside the film, i.e. the crystalline order and orientation. The specular 

scans are reported in Figure 4a; from the reflectivity (XRR) oscillations, observed in the 

region below q=0.2 Å-1, morphological parameters of the films were extracted (see Table S2). 

The surface roughness drastically increases when P3HT is blended with FLG flakes (except 

for the blend obtained from a solution filtered by 0.45 µm pores) so that oscillations are 

damped and the numerical value cannot be extracted as observed by AFM images. Moreover, 

the film thickness remains constant, being ca. 13 nm. 

In line with previous reports, P3HT aggregates in edge-on configuration on SiO2 surface, as 

indicated by the presence of the lamellar peak (100) at q = 0.37 Å-1 in the specular scan 

(Figure 4), with spacing of 1.7 nm. Interestingly, the peak is clearly observed only for the un-
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filtered P3HT. The vertical crystalline size extracted from the peak width matches with the 

film thickness, pointing that P3HT is well-stacked through the film. This is confirmed by the 

invariance of the reflection when the film is probed at different penetration depths (Figure S4, 

S5). The observation of multiple diffraction orders, i.e. (100), (200) and (300) reflections 

along the out-of-plane direction in the 2D GIWAXS images (Figures S4, S5), points out the 

high crystalline order typical for this polymer. The introduction of graphene in the blend 

affects the orientation of the polymer aggregation. Indeed, for un-filtered and 5 µm filtered 

solution, the lamellar peaks appear along the in-plane direction and decrease along the out-of-

plane direction, indicating the addition of P3HT in face-on orientation (likely lying on 

graphene’s surface).  

Despite a change in morphology and in the orientation of the polymer aggregation, no change 

in electrical performances is observed (mobility of 0.01 cm²/Vs and Ion/Ioff over 103 in both 

cases, Table 2). This could be due to the low amount of graphitic particles upon filtering 

(Figure 3e).  

When using a 0.45 µm-size filter the polymer appears being amorphous, as proven by the 

almost disappearance of lamellar peaks (Figure 4, S4, S6), thereby explaining the lowering of 

the field-effect mobility 

 Films of graphite exfoliated in the presence of PCDTPT were produced and 

characterized following the same procedure with OM and AFM images as well as transfer 

curves, presented in Figure 5. Unlike pure FLG and P3HT based solutions, graphite 

exfoliated in the presence of PCDTPT leads to homogeneous films of PCDTPT with a high 

concentration of a few-layer graphene flakes without any large graphitic aggregates, as 

evidenced by both the optical and AFM images (Figure 5a,d). In addition, the transfer curves 

do not feature high IDS current unaffected by VGS (Figure 5g), unlike previously observed in 

the case of pure few-layer graphene (Figure 2g) and hybrid graphene/P3HT depositions 

(Figure 3g). This result is particularly remarkable since it indicates that PCDTPT promotes 
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the exfoliation of graphite into graphene, forming a well-intermixed bi-component material 

that can be processed into homogeneous films (RRMS (graphene) = 14.5 nm and RRMS 

(Graphene:PCDTPT) = 11.8 nm as determined on a  3*3 µm2 and 2*2 µm2 images, 

respectively). The molecular structure of PCDTPT can explain the difference in exfoliation as 

it is a more rigid and planar polymer compared to P3HT. Furthermore, the recorded transfer 

curves did not display the typical behavior of films containing big graphitic particles bridging 

the electrodes. On the contrary, the resulting transfer curve (Figure 5g) is an addition of 

current issued from graphitic material and the tested polymer, implying that both materials 

play an important role in the charge carrier transport between the source and drain electrodes. 

The measured field-effect mobility of the hybrid films exceeded 0.1 cm²/Vs, being 30-fold 

greater than pure PCDTPT films. This is due to charges travelling through both materials, 

leading to charge transport characteristics that combine those intrinsic to both materials. The 

addition of FLG leads to an increase of both the mobility and the Ioff current, as compared to 

pristine PCDTPT. In order to explain this result, the effect of the addition of graphite before 

exfoliation was investigated by means of X-ray diffraction in specular and grazing incidence 

geometries. 

From XRR (Figure 6a) oscillations analysis, the surface roughness results to be almost the 

same for all the films, except for the blend obtained from an unfiltered solution. In this case, 

the high roughness is due to the presence of thick FLG sheets.  

For q>0.2 Å-1, the specular scan of 20 nm thick PDCTPT film (Figure 6a) displays the (100) 

peaks hinting a lamellar structure, with spacing 2.6 nm, when the film is prepared from an 

unfiltered solution. GIWAXS images collected on the same film (Figures S10, S11) show 

typical features of a polymer aggregation with edge-on orientation where (100) and (010) 

reflections, the latter coming from the π-π stacking periodicity, appear along the out-of-plane 

and in-plane directions, respectively. The polymer aggregation is homogenous along the film 

thickness, as evidenced by the persistence of Bragg reflections, although weak due to the low 
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crystalline order, on GIWAXS images collected at different penetration depths (see Figure 

S11). 

As observed for P3HT, since the film thickness does not change when the solution is prepared 

from filtered solution (Table S2), the absence of Bragg reflections on both specular scan and 

GIWAXS images (Figure 6, S10, S12) suggests that small aggregates are already formed in 

solution and successively transferred to the substrate surface. It could be that the filter 

removes the aggregates (e.g. resulting from the self-aggregation of the longest polymers) and 

consequently the polymer self-organizes in amorphous phase once deposited on the surface.  

With the introduction of few-layer graphene, the (100) and (200) lamellar peaks along the 

specular direction (Figure 6, S10, S12, S13) broadens, whereas they appear narrower along 

the in-plane direction, indicating the interaction between PDCTPT and graphene surface 

induces the polymer to self-organize in a face-on configuration. The film is therefore 

composed of two different populations of aggregates: one with edge-on configuration on 

silicon oxide and the other face-on on graphene surfaces. 

Hence, the XRD data is perfectly coherent with the electrical characterization. While the Ion is 

mostly, yet not exclusively, dependent on the layer of semiconductor at the interface with the 

dielectric, the Ioff is mostly dependent on the bulk of the semiconducting film. The observed 

transfer curve is therefore a combination of charge transport at the interface (PCDTPT 

aggregated in edge-on configuration, high Ion/Ioff, low current) and charge transport in the bulk 

(PCDTPT aggregated in face-on configuration on graphene, high Ion and Ioff currents). 

The filtering of the solutions with 5 µm-sized pores did only evidence a minor change in the 

global electrical performances within the obtained devices due to the reduced roughness. 

AFM images seem to indicate a lower concentration of FLG after filtering of the solution 

using a 5 µm pore size filter. While in the case of exfoliation in the presence of P3HT, FLG 

was removed upon filtration (Figure 5e), films produced from the filtered PCDTPT solution 

still contained some FLG, demonstrating a stronger interaction of graphene with the polymer 
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(Figure 5e). A small reduction in the mobility is measured, combined with a large decrease of 

the conductivity due to the reduced amount of graphitic material within the film. Films 

produced from a solution filtered using a 0.45 µm-sized pores lead to the presence of very few 

small graphitic aggregates within a layer of PCDTPT. Bragg peaks disappear when the 0.45 

µm-sized filter is used, confirming that the polymer already aggregates in solution. 

 

In summary, we have demonstrated a straightforward one-step procedure in which hybrid 

graphene-based composites are prepared via sonication-assisted liquid-phase exfoliation of 

graphite in the presence of suitably selected π-conjugated polymers. Even as very mild 

sonication parameters were used for the exfoliation, strong interactions between graphitic 

material and the organic semiconductors P3HT and PCDTPT were observed. GIWAXS data 

provided evidence that FLG exfoliated in the presence of PCDTPT exhibits to good coverage 

once spin-coated, with homogeneous polymer aggregation along the film thickness. 

The selection of an adequate polymer is the key parameter for achieving high electrical 

performances, as demonstrated by blends of graphite and PCDTPT that resulted in a 30-fold 

improvement of the mobility upon exfoliation and spin-coating. These performances were 

obtained from unfiltered solutions, highlighting the role of aggregation at the solution stage of 

fabrication. Furthermore, investigation of the differences in aggregation between bulk and 

semiconductor/dielectric interface lead to better understanding of the electrical characteristics 

measured in hybrid FLG/polymer films. These findings represent a gateway towards the 

optimization of graphene exfoliation, deposition and performance increase, as they highlight 

the importance of the selection of an adequate polymer (with energy level matching those of 

graphene and an ability to self-organize on graphene) added before the exfoliation of 2D-

materials and the effect of FLG/polymer aggregation on electrical performances.  
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Figure 1. Chemical structure of the two chosen p-type polymeric semiconductors: (a) P3HT, 
and (b) PCDTPT.  
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Figure 2. OM, topographical AFM and transfer curves of films produced from (a,d,g) 
dispersions of neat graphitic material exfoliated in 1,2-dichlorobenzene, (b,e,h) solutions of 
pure P3HT [L = 20 µm, VDS = -0.1 V], and (c,f,i) solutions of pure PCDTPT. Z-scales: (d) 72 
nm; (e) 48 nm; (f) 8 nm. 
 
 
 
 

  

(a)       (b)           (c) 

(d)       (e)           (f) 

(g)      (h)         (i) 
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Figure 3. OM, topographical AFM and transfer curves of films produced from dispersions of 
graphite exfoliated in the presence of P3HT. (a,d,g) pristine solution, as well as after filtering 
using a pore-sized filter: (b,e,h) 5 µm, and (c,f,i) 0.45 µm. Z-scales: (d) 55 nm, (e) 78 nm, (f) 
20 nm. 

 

 
Figure 4. (a) Specular scans, and (b) in-plane integrated intensities of GIWAXS images 
(Figure S4) of the P3HT and few-layer graphene:P3HT spin-coated films, shifted for clarity. 

(a)       (b)           (c) 

(d)       (e)           (f) 

(g)      (h)         (i) 
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Bragg peaks coming from graphene solution and substrate are labelled by stars and open 
circles, respectively. 
 
 

                                 	

                                 

 

Figure 5. OM, topographical AFM and transfer curves of films produced from dispersions of 
graphitic material exfoliated in the presence of PCDTPT. (a,d,g) pristine solution, as well as 
after filtering using a pore size of (b,e,h) 5 µm, and (c,f,i) 0.45 µm. Z-scales: (d) 86 nm; (e) 
358 nm, (f) 77 nm.	

 

 

(a)       (b)           (c) 

(g)      (h)         (i) 

(d)       (e)           (f) 
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Figure 6. (a)Specular scans and (b) in-plane integrated intensities of GIWAXS images 
(Figure S10) of the PCDTPT and FLG:PCDTPT spin-coated films, shifted for clarity. Bragg 
peaks coming from graphene solution are labelled by stars. 

 
 
Table 1. HOMO and LUMO energy levels of the conjugated polymers P3HT and PCDTPT. 
Material HOMO [eV] LUMO [eV] Band gap [eV] 
P3HT[38]  -4.96 -3.04 1.92 
PCDTPT[39]  -5.16 -3.70 1.46 

All reported values for polymers were obtained from cyclic voltammetry in the cited works. 
The work function of the FLG, measured by Ambient Photoelectron Spectroscopy (see 
supporting information, Figure S15), amounted to -4.94 eV. 
 
Table 2. Summary of the electrical performances and Root-Mean-Square Roughness (RRMS) 
of the pristine and hybrid films. 
Material Filter pore size µ / cm²/Vs Ion/Ioff RRMS / nm 
FLG / / 1 14.5 
P3HT / 1 × 10-2 105 5.87 
PCDTPT / 4.2 × 10-3 106 1.05 
FLG:P3HT / / 1 13.4 
FLG:P3HT 5 µm 1 × 10-2 105 11.2 
FLG:P3HT 0.45 µm 3 × 10-3 106 1.3 
FLG:PCDTPT / 1.2 × 10-1 1.4 11.8 
FLG:PCDTPT 5 µm 8 × 10-2 30 43.2 
FLG:PCDTPT 0.45 µm 5 × 10-3 106 12.8 

All reported values were obtained from the transfer curves presented in Figures 1, 2 and 4. 
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