253 research outputs found

    Wave-Mechanical Electron-Optical Modeling of Field-Emission Electron Sources

    Get PDF
    Electron source coherence has a very important influence on the imaging capabilities of modern electron microscopes. However, conventional electron source models that are based on geometrical electron optics implicitly assume that the emission from the source surface is fully incoherent, which can complicate the treatment of highly coherent field-emission sources. In an attempt to treat the wave-optical properties of electron sources, models inspired by light optics treatments of (partially) coherent sources, which assume a planar source and free wave propagation, have been developed. In this case the underlying assumptions are problematic, because the source surface of a field emitter can have a radius of curvature on the nanometer scale, and the emitted electrons are accelerated by a strong, inhomogeneous electrostatic field following emission. We introduce a model based on wave-mechanical electron optics that draws on a quantum mechanical description of electron emission and propagation to obtain a physically consistent treatment of the wave-mechanical properties of electron sources. We apply the model to investigate spatial resolution limits in low-energy electron holography and microscopy, where it is shown that aberrations and coherence properties of the electron source are crucial and interrelated. The wave-mechanical electron-optical model can, furthermore, be readily generalized to assess and improve electron source performance in other scenarios and techniques where spatial and temporal coherence, and electron-optical aberrations, are relevant

    Scalable multicomponent spectral analysis for high-throughput data annotation

    Get PDF
    Orchestrating parametric fitting of multicomponent spectra at scale is an essential yet underappreciated task in high-throughput quantification of materials and chemical composition. We present a systematic approach compatible with high-performance computing infrastructures using the MapReduce model and task-based parallelization. Our approach is realized in a software, pesfit, to enable efficient generation of high-quality data annotation and online spectral analysis as demonstrated using experimental materials characterization datasets

    Ultrafast lattice dynamics and electron-phonon coupling in platinum extracted with a global fitting approach for time-resolved polycrystalline diffraction data

    Get PDF
    Quantitative knowledge of electron-phonon coupling is important for many applications as well as for the fundamental understanding of nonequilibrium relaxation processes. Time-resolved diffraction provides direct access to this knowledge through its sensitivity to laser-induced lattice dynamics. Here, we present an approach for analyzing time-resolved polycrystalline diffraction data. A two-step routine is used to minimize the number of time-dependent fit parameters. The lattice dynamics are extracted reliably by finding the best fit to the full transient diffraction pattern rather than by analyzing transient changes of individual Debye-Scherrer rings. We apply this approach to platinum, an important component of novel photocatalytic and spintronic applications, for which a large variation of literature values exists for the electron-phonon coupling parameter Gep. Based on the extracted evolution of the atomic mean squared displacement (MSD) and using a two-temperature model (TTM), we obtain Gep=(3.9±0.2) ⋅ 1017W/m3K. We find that at least up to an absorbed energy density of 124 J/cm3, Gep is not fluence-dependent. Our results for the lattice dynamics of platinum provide insights into electron-phonon coupling and phonon thermalization and constitute a basis for quantitative descriptions of platinum-based heterostructures in nonequilibrium conditions

    Multidimensional Contrast Limited Adaptive Histogram Equalization

    No full text
    Contrast enhancement is an important preprocessing technique for improving the performance of downstream tasks in image processing and computer vision. Among the existing approaches based on nonlinear histogram transformations, contrast limited adaptive histogram equalization (CLAHE) is a popular choice when dealing with 2D images obtained in natural and scientific settings. The recent hardware upgrade in data acquisition systems results in significant increase in data complexity, including their sizes and dimensions. Measurements of densely sampled data higher than three dimensions, usually composed of 3D data as a function of external parameters, are becoming commonplace in various applications in the natural sciences and engineering. The initial understanding of these complex multidimensional datasets often requires human intervention through visual examination, which may be hampered by the varying levels of contrast permeating through the dimensions. We show both qualitatively and quantitatively that using our multidimensional extension of CLAHE (MCLAHE) acting simultaneously on all dimensions of the datasets allows better visualization and discernment of multidimensional image features, as are demonstrated using cases from 4D photoemission spectroscopy and fluorescence microscopy. Our implementation of multidimensional CLAHE in Tensorflow is publicly accessible and supports parallelization with multiple CPUs and various other hardware accelerators, including GPUs

    Revealing the role of electrons and phonons in the ultrafast recovery of charge density wave correlations in 1TT-TiSe2_2

    Full text link
    Using time- and angle-resolved photoemission spectroscopy with selective near- and mid-infrared photon excitations, we investigate the femtosecond dynamics of the charge density wave (CDW) phase in 1TT-TiSe2_2, as well as the dynamics of CDW fluctuations at 240 K. In the CDW phase, we observe the coherent oscillation of the CDW amplitude mode. At 240 K, we single out an ultrafast component in the recovery of the CDW correlations, which we explain as the manifestation of electron-hole correlations. Our momentum-resolved study of femtosecond electron dynamics supports a mechanism for the CDW phase resulting from the cooperation between the interband Coulomb interaction, the mechanism of excitonic insulator phase formation, and electron-phonon coupling.Comment: 9 pages, 6 figure

    Anisotropic Nonequilibrium Lattice Dynamics of Black Phosphorus

    No full text
    Black phosphorus has recently attracted significant attention for its highly anisotropic properties. A variety of ultrafast optical spectroscopies has been applied to probe the carrier response to photoexcitation, but the complementary lattice response has remained unaddressed. Here we employ femtosecond electron diffraction to explore how the structural anisotropy impacts the lattice dynamics after photoexcitation. We observe two timescales in the lattice response, which we attribute to electron-phonon and phonon-phonon thermalization. Pronounced differences between armchair and zigzag directions are observed, indicating a non-thermal state of the lattice lasting up to ~60 picoseconds. This non-thermal state is characterized by a modified anisotropy of the atomic vibrations compared to equilibrium. Our findings provide insights in both electron-phonon as well as phonon-phonon coupling and bear direct relevance for any application of black phosphorus in non-equilibrium conditions

    Direct observation of ultrafast lattice distortions during exciton-polaron formation in lead-halide perovskite nanocrystals

    Get PDF
    The microscopic origin of slow carrier cooling in lead-halide perovskites remains debated, and has direct implications for applications. Slow carrier cooling has been attributed to either polaron formation or a hot-phonon bottleneck effect at high excited carrier densities (> 1018 cm-3). These effects cannot be unambiguously disentangled from optical experiments alone. However, they can be distinguished by direct observations of ultrafast lattice dynamics, as these effects are expected to create qualitatively distinct fingerprints. To this end, we employ femtosecond electron diffraction and directly measure the sub-picosecond lattice dynamics of weakly confined CsPbBr3 nanocrystals following above-gap photo-excitation. The data reveal a light-induced structural distortion appearing on a time scale varying between 380 fs to 1200 fs depending on the excitation fluence. We attribute these dynamics to the effect of exciton-polarons on the lattice, and the slower dynamics at high fluences to slower hot carrier cooling, which slows down the establishment of the exciton-polaron population. Further analysis and simulations show that the distortion is consistent with motions of the [PbBr3]- octahedral ionic cage, and closest agreement with the data is obtained for Pb-Br bond lengthening. Our work demonstrates how direct studies of lattice dynamics on the sub-picosecond timescale can discriminate between competing scenarios, thereby shedding light on the origin of slow carrier cooling in lead-halide perovskites

    Exchange-Striction Driven Ultrafast Nonthermal Lattice Dynamics in NiO

    Get PDF
    We use femtosecond electron diffraction to study ultrafast lattice dynamics in the highly correlated antiferromagnetic (AFM) semiconductor NiO. Using the scattering vector (Q) dependence of Bragg diffraction, we introduce Q-resolved effective temperatures describing the transient lattice. We identify a nonthermal lattice state with preferential displacement of O compared to Ni ions, which occurs within ∼0.3  ps and persists for 25 ps. We associate this with transient changes to the AFM exchange striction-induced lattice distortion, supported by the observation of a transient Q asymmetry of Friedel pairs. Our observation highlights the role of spin-lattice coupling in routes towards ultrafast control of spin order

    Intrinsic energy flow in laser-excited 3d ferromagnets

    Get PDF
    Ultrafast magnetization dynamics are governed by energy flow between electronic, magnetic and lattice degrees of freedom. A quantitative understanding of these dynamics must be based on a model that agrees with experimental results for all three subsystems. However, ultrafast dynamics of the lattice remain largely unexplored experimentally. Here, we combine femtosecond electron diffraction experiments of the lattice dynamics with energy-conserving atomistic spin dynamics (ASD) simulations and ab-initio calculations to study the intrinsic energy flow in the 3d ferromagnets cobalt (Co) and iron (Fe). The simulations yield a good description of experimental data, in particular an excellent description of our experimental results for the lattice dynamics. We find that the lattice dynamics are influenced significantly by the magnetization dynamics due to the energy cost of demagnetization. Our results highlight the role of the spin system as the dominant heat sink in the first hundreds of femtoseconds. Together with previous findings for nickel [1], our work demonstrates that energy-conserving ASD simulations provide a general and consistent description of the laser-induced dynamics in all three elemental 3d ferromagnets

    A quantitative comparison of time-of-flight momentum microscopes and hemispherical analyzers for time- and angle-resolved photoemission spectroscopy experiments

    Get PDF
    Time-of-flight-based momentum microscopy has a growing presence in photoemission studies, as it enables parallel energy- and momentum-resolved acquisition of the full photoelectron distribution. Here, we report table-top extreme ultraviolet (XUV) time- and angle-resolved photoemission spectroscopy (trARPES) featuring both a hemispherical analyzer and a momentum microscope within the same setup. We present a systematic comparison of the two detection schemes and quantify experimentally relevant parameters, including pump- and probe-induced space-charge effects, detection efficiency, photoelectron count rates, and depth of focus. We highlight the advantages and limitations of both instruments based on exemplary trARPES measurements of bulk WSe2. Our analysis demonstrates the complementary nature of the two spectrometers for time-resolved ARPES experiments. Their combination in a single experimental apparatus allows us to address a broad range of scientific questions with trARPES.Comment: 19 pages, 9 figures. The following article has been submitted to Review of Scientific Instruments / AIP Publishing. After it is published, it will be found at https://aip.scitation.org/journal/rs
    • …
    corecore