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Orchestrating parametric fitting of multicomponent spectra at scale is an es-

sential yet underappreciated task in high-throughput quantification of mate-

rials and chemical composition. We present a systematic approach compat-

ible with high-performance computing infrastructures using the MapReduce

model and task-based parallelization. Our approach is realized in a software,

pesfit, to enable efficient generation of high-quality data annotation and online

spectral analysis as demonstrated using experimental materials characteriza-

tion datasets.

Introduction

Real-time understanding of experimental data in materials and chemical characterization is a

pursuit for the coming age of automation [1]. Building machine learning models for experi-

mental techniques that produce spectral or spectrum-like data requires tools for spectrum anno-

tation, which pairs data with quantitative information extracted by fitting approximate lineshape

or structural models [2]. Achieving computational efficiency in these tasks allows processing
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large amounts of data with negligible human intervention as well as execution of online or

on-the-fly analysis. In materials characterization measurements, changes in sample and envi-

ronmental conditions could appear in minutes to hours, while experimental campaigns often run

continuously for days or longer. Moreover, the data acquisition process often involves tuning of

external variables [3] such as the spatial locations, time, temperature, concentration, etc, result-

ing in multidimensional datasets of multicomponent spectra (each component being a spectral

lineshape or background model). As a realistic example, fitting a thousand 10-component spec-

tra, with 3-4 parameters for each component would result in a large-scale optimization problem

involving on the order of 104 parameters. To assess the experimental outcome on this scale is

not uncommon in modern high-throughput experimentation [4], therefore, efficient computa-

tional scaling with respect to spectral complexity, as quantified by the number of components,

becomes crucial for automating materials characterization.

In this work, we leverage high-performance computing (HPC) to achieve linear scaling for

a class of spectrum annotation task – multicomponent spectral analysis (MSA) [5] or fitting.

Broadly speaking, the MSA problem encompasses two complementary scenarios: (1) Fitting

an unknown number of peaks at fixed spectral locations with varying amplitudes; (2) Fitting

a fixed number of peaks at varying spectral locations. Ultimately, MSA extracts information

such as the shape and height of spectral components and disentangles signal from background.

Mathematically, MSA may be mapped to separable nonlinear least squares problems [6] present

in various branches of science and engineering. In analytical chemistry, where scenario (1) is

frequently encountered for understanding spectroscopic data, matrix factorization techniques

without [7] or with limited prior knowledge [8] of pure spectral components (i.e. spectra from

single sources or species) are often adopted for data analysis. In comparison, scenario (2)

remains a recurring challenge in upscaling the analysis pipeline of quantitative electron- and

X ray-based characterization techniques, when large, annotated, empirical databases are yet to

exist for model training. Moreover, the equivalents in scenario (2) of pure spectral components

are generally unattainable. Currently, relevant softwares for materials characterization usually

only provide the option for sequentially fitting isolated spectra [9] or pattern in the case of

diffraction [10]. Therefore, we have developed pesfit [11], a software to tackle the MSA

problem in (2) at scale to facilitate online and offline analysis and experimental feedback. In

the following, we discuss the software architecture, validate the computational scaling on batch

spectrum fitting and present use cases of spectrum annotation in materials characterization.

2



Results

Scalable software architecture. Fitting a multicomponent spectrum requires iterative calcula-

tion of its components, which are typically modelled as unimodal probability distributions or

analytical functions. The mathematical context is provided in Methods. In practice, a complex

spectrum may comprise tens of components or may be divided into segments of a similar size.

Maintaining a reasonable computational performance with a large number of spectra with in-

creasing complexities requires both resource and architectural upgrade on almost all steps of

single-spectrum fitting that remains the mainstay in existing data analysis workflows [9, 10].

We have realized linear scaling in pesfit to satisfy the computational needs and alleviate the
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Figure 1: Schematic of the scalable software architecture. Each fitting task for a multicom-
ponent spectrum (left) requires iterative evaluation of an approximate spectral lineshape model.
A MapReduce approach implemented in MultipeakModel (see Methods) is used to execute
the calculation of all components. During optimization, an initialization generator may add
user-specified perturbations to the initial conditions to refine the outcome, guided by an error
function (such as goodness-of-fit metrics) involving the data and the fit. The entire pool of
fitting tasks (middle) formed by aggregating individual ones is distributed over the multicore
CPUs in a standard computing infrastructure (right) and different task schedulers may be used.
Task-based parallelization with the asynchronous scheme shown here (right) allows to balance
the computational loads between fitting tasks.

manual task load in (1) multicomponent spectrum computation, (2) batch execution, as well as

the associated steps of (3) initial condition generation and (4) fitting result collection. To mini-

mize redundancy in (1), we constructed a generating class (MultipeakModel, see Methods)

to represent multicompoent spectra, making use of a MapReduce structure [12] for evaluating

the spectra given the constituents (see Fig. 1 left). Our approach extends the popular spectral
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lineshape fitting framework lmfit [13] to allow batch fitting a multitude of spectra with an

arbitrary number of components. The MapReduce approach splits up (“map” step) the evalu-

ation of multicomponent spectra into parallelizable computation of the components followed

by merging (“reduce” step) of the results (see Fig. 1 left) and allows to generate an arbitrary

complex spectral shape from existing lineshape models or user-defined functions without hard-

coding each type of multicomponent spectrum separately. Each task thus constructed executes

fitting of a single spectrum (see Eq. (2) in Methods). To enable (2), the compartmentalized fit-

ting tasks (see Fig. 1 middle) are executed concurrently through dask [14], parmap [15], and

torcpy [16] on an HPC infrastructure with multicore CPUs (see Fig. 1 right). Resource shar-

ing (including the numerical data and the multicomponent spectrum model) between tasks is

implemented in distributed fitting (DistributedFitter, see Methods) to reduce the mem-

ory footprint. To simplify (3), the pesfit package includes convenient methods to program-

matically generate initial conditions for a large number of fitting parameters (see Methods). The

initial conditions are assembled into a nested key-value pairs (Python dictionary) to deliver to

the optimizer. In step (4), the fitting results in the form of parameter lists are collected by a

DataFrame data structure from pandas, whose expansive functionality allows further statisti-

cal analysis of the outcome [17]. The fitting results and the initial conditions may be exported

for reproducible examination of the specific fitting tasks. A schematic of the computational

workflow is shown in Supplementary Fig. 1.

Performance evaluation with use cases. We demonstrate the use of the batch fitting method on

experimental data from two popular materials characterization techniques: photoemission spec-

troscopy and powder electron diffraction. Both of these techniques generate multidimensional

datasets involving multicomponent spectra or spectrum-like signals. Spectrum fitting is carried

out with predefined, domain-specific multicomponent models. In momentum-resolved photoe-

mission spectroscopy, extracting electronic band dispersion requires batch fitting of momentum-

dependent intensity-valued energy spectra. We use photoemission band mapping data (see

Methods) of bulk tungsten diselenide (WSe2), which was measured for about an hour and con-

tains a maximum of 14 energy bands within the probed energy range of ∼ 8 eV, to benchmark

the fitting algorithms. The electron diffraction dataset was recorded for polycrystalline plat-

inum (Pt) with a pump-probe scheme – pump light induces electronic and lattice dynamics that

are probed by electron diffraction – to obtain time- and fluence-dependent 1D diffraction pat-

terns [18]. The data was acquired continuously over 2 days with up to 10 diffraction peaks
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Figure 2: Computational evaluation on experimental datasets. Performance comparison
between the sequential fitting procedure and the distributed fitting procedure on benchmark
datasets: a, photoemission spectroscopy (PES) of the valence band (around K point in momen-
tum space) of WSe2 with up to 14 energy bands considered; b, femtosecond electron diffraction
(FED) of polycrystalline Pt [18], with up to 10 diffraction peaks and a background profile con-
sidered. The computing times (Tsequential and Tdistributed), here used as the evaluation metric, are
normalized to both the number of components and spectra (or diffraction peaks).

of Pt within the measured reciprocal space. Further details of the experiments are provided in

Methods.

In both use cases, the batch fitting is initiated with realistic guesses in their respective

domains (see Methods), the optimization processes using both sequential and distributed ap-

proaches are timed for comparison. As shown in Fig. 2, the realistic cost metric used for com-

parison is the computing time normalized to the per-spectrum and per-component level. The

distributed approach generally exhibits a linear dependence on the number of components in the

data, while the sequential approach, as is common practice in the field, has at least a quadratic

scaling. In both cases, distributed fitting of a significant portion of the data is sufficiently faster

than the respective experimental duration (see Methods). The polynomial speed-up therefore

allows multicomponent spectral analysis on the fly during the experimental measurements, with

only the added cost on the computing hardware. Moreover, the tuning of the initialization to

improve the fitting outcome may be conducted interactively using the same software, which

allows to design custom approaches to deal with complex spectra. Some intuitive approaches

to achieve high performance and consistency within the fitting results are discussed in the Sup-

plementary Information and illustrated in Supplementary Fig. 2.
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Discussion

We have described a linear-scaling software architecture for mapping the multicomponent spec-

tral analysis problem to distributed hardware. The modular architecture of the pesfit package

also allows convenient upgrade of its components individually in the future. For example, it is

possible to plug in alternative optimizers for batch fitting, such as brute-force search or variable

projection [19], which have respective speed-accuracy tradeoffs in solving large-scale nonlinear

least squares problems. Although we have assumed prior knowledge for the number of compo-

nents, the requirement may be relaxed using numerical estimation [20, 21]. Our approach fully

exploits the HPC infrastructure to provide a convenient toolkit for speeding up data annotation

in materials characterization without requiring repeated data loading and human intervention.

The computational performance demonstrated with benchmark use cases provides a baseline

for future algorithm development using such annotation for training supervised learning algo-

rithms. The software may be integrated with existing computational workflows [10, 22], thereby

functioning as a building block for closed-loop materials characterization to facilitate experi-

mental optimization and discovery.

Methods

Materials characterization datasets. Both experimental datasets are measured with home-

built instruments at the Fritz Haber Institute. The photoemission spectroscopy experiment is

conducted using pulsed light source based on high harmonic generation as described previously

[23]. The sample under study is single crystalline tungsten diselenide (WSe2). Extreme UV

pulses with an energy of 21.7 eV liberate electrons from the WSe2 sample surface, which are

subsequently captured as single events in 3D (energy and two momenta) by a time-of-flight

delay-line detector (METIS 1000, SPECS GmbH). A custom computational pipeline is used to

preprocess the single events to produce the 3D photoemission band mapping data [22]. The

femtosecond electron diffraction experiment [18] contains fluence-dependent measurements of

polycrystalline Pt diffraction pattern with the laser excitation at 0.70 eV and 70 kV electron

bunches generated from a gold photocathode [24]. The 2D diffraction patterns are recorded

with a CMOS camera (TemCam-F416, TVIPS GmbH) at a frame integration time of 5 s. The

measured diffraction rings are collapsed into 1D diffraction peaks via radial averaging.
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Software details and mathematical context. The main modules in pesfit are lineshape,

fitter and metrics. The lineshape module contains the MultipeakModel class.

The fitter module contains funtions to automate the construction of fitting tasks and initial-

izations as well as simple visualization methods for displaying fitting results. The metrics

module includes evaluation metrics for assessing the quality of fits. The sequential and dis-

tributed fitting are achieved through the PatchFitter and DistributedFitter classes,

respectively, both lie within the fitter module. To fit higher-dimensional (> 2D) spectral

data, the data are first partially transformed to 2D before the fitting tasks are farmed out to pro-

cessors. The initial conditions can be generated programmatically using init generator

and supplied to a multicomponent model via varsetter, both are integrated into the fitter

module classes discussed here, but are also invocable separately and individually. The order-

ing of fitting tasks is tracked by a spectrum index (spec id) to accommodate asynchronous

concurrent execution, which permits index scrambling.

Both sequential and distributed fitting of the benchmark datasets uses the default Levenberg-

Marquardt algorithm for minimization with a spectrum-wise least-squares loss function and

bound constraints. We formulate the single multicomponent spectral analysis task as

S̃ = argmin

∥∥∥∥∥I(ω)−
∑
n

fn(ω, sn)

∥∥∥∥∥
2

ω

. (1)

Here, I is the intensity-valued spectrum data with the spectral dimension ω. sn = (sn,1, sn,2, ...)

is the set of parameters of the single-component spectral lineshape or background model fn,

with n being the index of spectral components. The symbol ‖·‖ω denotes the Euclidean norm

with respect to the spectral dimension. S̃ = [̃s1 s̃2 ...] is the concatenated list of component-wise

fitting parameters after optimization. For example, a 10-component spectrum with 4 parameters

for each component results in an S̃ of size 40 for a single-spectrum fitting task. Based on this

notation, batch fitting of multidimensional data is written as

{S̃{ai}} = argmin

∥∥∥∥∥I(ω, {ai})−
∑
n

f {ai}n (ω, s{ai}n )

∥∥∥∥∥
2

ω

, (i = 1, 2, ...). (2)

Now, I becomes multidimensional with the coordinates of other dimensions represented by

{ai} = (a1, a2, ...). A scalar-valued spectrum index is assigned to each multidimensional co-

ordinate {ai} according to the row-major order. On the left-hand side of Eq. (2), {S̃{ai}} =

{[̃s1 s̃2 ...]{ai}} involves a double concatenation (firstly row-wise over the inner brackets [ · · · ]
and ordered by the spectral components, secondly column-wise over the outer brackets { · · · }
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and ordered by the spectrum index), which represents the entirety of spectrum-wise optimized

parameter sets gathered over all {ai} coordinates. This arrangement turns the fitting results into

a 2D array regardless of the dimensionality of the data. The nonlinear least-squares problems

in Eqs. (1)-(2) are considered separable in the sense that the spectrum model may be written as

a sum of components [6, 19].

Computational benchmarks. All batch fitting benchmarks are run on an on-premises com-

puting server (Dell PowerEdge R840), equipped with four Intel Xeon Gold 6150 multicore

CPUs. The sequential fitting tasks are run with a single logical core, while the distributed fitting

tasks are run using the specified number of processes mapped onto logical cores. The RAM

size doesn’t pose a limit on the computing time of the benchmark fitting tasks. Fitting of the

photoemission data of WSe2 uses the density functional theory electronic structure calculation

available within the NOMAD repository (DOI: 10.17172/NOMAD/2020.03.28-1) along with

a rigid shift of 0.2 eV to all bands as the initial condition for the band positions, while fitting

the diffraction peak positions of polycrystalline Pt uses the estimate positions from a reference

spectrum. Each spectrum in the photoemission data was fit with up to 14 Voigt lineshapes in

combination. For experimental monitoring, band dispersion information from a region around

a high-symmetry point of the material suffices. As a time reference, batch fitting of 1600 4-

component spectrum (see Supplementary Fig. 2) costs around 6 min. The electron diffraction

data was fit with up to 10 Voigt lineshapes and an exponential-decay background model. The

entire set of 225 11-component spectrum costs < 3 mins. Since in practice, only a fraction of

the data (both in range and in quantity) is needed to monitor the sample condition, the speed

boost is sufficient to enable real-time interaction with experiments. Running the distributed

fitting consistently at the optimal speed requires tuning of the task parallelization parameters

– the number of worker processes and the number of tasks per process. An extended example

showing the trade-off between these two parameters is shown in Supplementary Fig. 3. Never-

theless, in practice, only a few trials on subsets of data are needed to find a reasonable trade-off

that minimizes the computing time.
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S1 Modes of operation

Although the problem mapping and software realization presented in this work offer a scalable

and automatable solution for batch fitting of multicomponent spectra, situations will always

exist when a subset of the fitting tasks yield unfeasible answers due to experimental resolution,

noise in the data, the sloppiness of the model used for fitting [25], etc. This also applies to

offline data analysis where a more accurate model is often required for fitting to extract specific

parameters, while in online analysis, approximate models with less computational overhead

are favored. In the following, we offer here a set of strategies outlined in the computational

workflow (see Supplementary Fig. 1) to resolve potential outstanding cases while making use

of the existing convenience functionalities offered by pesfit. In the demonstrations below,

we discuss primarily in the context of photoemission data due to its complexity compared with

diffraction data, but a similar line of reasoning also applies to other materials characterization

methods involving spectra or spectrum-like data.
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S1.1 Tuning of hyperparameters and initialization

To arrive at a meaningful outcome, batch fitting of multicomponent spectra requires suitable

initialization with knowledge from theoretical calculations or educated guesses. We treat rigid

shifts applied to theory or reference in initialization as hyperparameters for the fitting procedure,

which may be tuned in different ways according to the data characteristics. We discuss here

three sets of methods that may be realized using pesfit.

Theory-based approach. When theoretical calculation or reference spectrum is present, (i) The

random varshift method in the fitter module of pesfit enables automated tuning of

initial condition using random search within user-defined values to optimize a goodness-of-fit

metric. (ii) Alternatively, if regions of the spectra may be isolated with no overlap with the

rest (e.g. when spectral intensity goes to baseline level at the two ends of the segment), a (1)

divide-and-conquer tuning approach may be adopted to batch fit and tune the hyperparameters

for a segment at a time. This applies to diffraction data and the photoemission data of mate-

rials with relatively flat and isolated bands, such as organic molecular crystals or monolayers

[26]. If the isolation between segments is less perfect, one may adopt an (2) expanding win-

dow tuning approach to batch fit and tune an increasing number of spectral components (thus

the “expanding window”), retaining the hyperparameters used for the previous segments while

fitting in an increasingly broader spectral window. These two approaches are illustrated in Sup-

plementary Fig. 3a-b. During the tuning process, the fitting outcome may be appraised using

either goodness-of-fit metrics or via visual inspection. An example showing the results before

and after hyperparameter tuning is shown in Supplementary Fig. 3c-d using photoemission data

from WSe2. The results compare that from initialization with a 0.2 eV rigid shift of all bands

(3c) and that with a band-wise tuned rigid shift of 0.2 eV, 0.18 eV, 0.22 eV and -0.24 eV for

each energy band (3d), respectively.

Data-driven approach. When theoretical calculation or a reference spectrum is not available,

(iii) one can resort to a data-driven approach. A selected number of distinctive spectra may

be fit manually (guess fit) to determine the anchor points as reference for interpolation, which

generates the initial conditions for the entire dataset. The data-derived initial conditions may

then be used in batch fitting. An example using 16 equally-spaced anchor points to fit 1600 (40

× 40 grid in kx – ky coordinates) multicomponent spectra is shown in Supplementary Fig. 3d

(lower row). Here, we used the Clough-Tocher interpolator [27] implemented in scipy [28]

11
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Supplementary Figure 1: Proposed multicomponent spectral analysis workflow. The com-
putational workflow starts from the dataset organized into a multidimensional array. Then, the
multicomponent spectrum model is constructed using domain knowledge. If theoretical calcu-
lation or a reference spectrum is available, the workflow progresses to the stage of tuning task
parallelization parameters. Otherwise, an initial guess fit of single spectra at distinct locations is
required, along with interpolation of the spectral peak locations to other instances without guess
fitting results. Using theory or reference spectrum positions as input, hyperparameters tuning
is needed to compensate for the offsets from experimental data, but this is often unnecessary if
guess fitting results are available. Finally, the batch fitting routine may be deployed for offline
analysis or online monitoring of experimental results, using user-defined metrics constructed
with the spectrum fitting outcome.
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Supplementary Figure 2: Semi-automated fine-tuning of hyperparameters. Tuning of the hy-
perparameters in batch fitting multicomponent spectra with a, the divide-and-conquer approach
and b, the expanding window approach, illustrated with synthetic spectra. The two segments
are numbered in dashed boxes with different colors. Demonstration of the tuning uses c. the
photoemission dataset (containing 1600 multicomponent spectra) measured near the K point of
WSe2. Other important landmarks within the projected first Brillouin zone (1BZ) include the
zone center (Γ) and zone edge (K). The overline signifies the surface projection (e.g. K in
photoemission corresponds to K). d. Comparison of the band dispersions reconstructed using
batch fitting without (upper row) and with band-wise fine-tuning (middle row) of the shift hy-
perparameters of band structure calculation. The lower row shows the batch fitting results using
data-derived initialization. The fourth band is not resolved here due to strong overlap with the
third band at around K. The band mapping data used for fitting has been symmetrized to balance
the matrix elements. The colormap for each energy band is scaled separately for visualization.
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to obtain the data-derived initial conditions for all bands, although other multivariate nonlinear

interpolators should suffice in general. In comparison, the data-driven approach shows higher

consistency among neighboring spectra due to the closer resemblance of data-derived initial

condition than the theoretical calculation to the final outcome.

4 10 20 40 60 80 100 120
Number of worker processes

4

8

16

32

64

128

256

512

N
um

be
r o

f t
as

ks
 p

er
 p

ro
ce

ss

1710 1645 1660 1671 1661 1664 1657 1682

990 846 854 864 854 867 838 848

635 450 436 438 437 438 438 436

508 319 291 291 295 297 290 294

546 332 333 335 337 349 348 333

565 526 521 524 560 546 538 526

967 907 969 966 981 972 977 972

1039 1030 1051 1039 974 1030 972 969

200

400

600

800

1000

1200

1400

1600

1800

2000

C
om

puting tim
e (s)

Supplementary Figure 3: Effects of task parallelization parameters on computing time.
Linear-scale heatmap of the computing time for the distributed multicomponent fitting proce-
dure presented in this work. Each entry represents the computing time (in seconds) elapsed in a
numerical experiment, where a distinct pair of parameters (processes and tasks per process) is
selected to execute the same number of multicomponent spectral analysis tasks (900 spectra in
total, each with 4 components), which uses the synthetic photoemission data benchmark from
around the K point of WSe2.

S1.2 Tuning of model complexity

In cases where strictly isolating a group of spectral features using data slicing is challenging,

there may exist the situation where a subset of the data requires a more complex model (sec-

ondary model) to fit than the rest (primary model). Alternatively, the tuning may also be realized

by changing the data range used in fitting. This appears commonly in cases where spectral shift
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is present, such as in photoemission data due to the existence of band dispersion and matrix

element effects, which results in the dependence of spectral features on momentum coordinate

(in momentum-resolved measurements), sample position (in spatially-resolved measurements),

etc. Comparatively, in diffraction datasets involving phase transition due to changes in macro-

scopic parameters or dynamics, the diffraction peak position changes, if any, are relatively small

with respect to the peak width. After batch fitting with the primary model, the less well-fit spec-

tra may be selected using goodness-of-fit metrics. These outlier spectra may be batch fit again

using a secondary spectrum model with more (or less) components than the primary model.

S1.3 Tuning of task parallelization parameters

For any batch fitting task, there are generally two key parameters to tune to minimize the overall

computing time by balancing the number of worker processes (nW) and the number of tasks per

worker process (nT), or chunk size in this context [29]. Their tradeoff depends on the complex-

ity of the multicomponent spectrum model and the quality of the initial condition provided to

the optimizer. An example is provided in Supplementary Fig. 3. To facilitate the use of our

approach, we provide here a list of potential choices for these parameters for reference. From

our experience, batch fitting hundreds to thousands of spectra generally requires nW > 10 for

performance optimization, although for low-complexity problems (e.g. with very few spectral

components), a smaller number of processes will suffice. it’s generally. when there are only 2-3

components in the multicomponent spectrum model, nT should be a few hundreds to maximize

the computational efficiency. When there are 4-6 components per spectrum, nT should be below

100. When there are 8-10 components per spectrum, nT should be less than 30-40. Beyond 10

components per spectrum, it is advised not to use nT larger than 10-20.

References
1. Spurgeon, S. R. et al. Towards data-driven next-generation transmission electron mi-

croscopy. Nature Materials (2020).

2. Woodruff, P. Modern Techniques of Surface Science 3rd (Cambridge University Press,
Cambridge, 2016).

3. Hofmann, P. In operando devices studied by angle-resolved photoemission spectroscopy.
arXiv, 2011.11490. arXiv: 2011.11490 (2020).

4. Umehara, M. et al. Analyzing machine learning models to accelerate generation of funda-
mental materials insights. npj Computational Materials 5, 34 (2019).

15

https://arxiv.org/abs/2011.11490


5. Blackburn, J. A. Computer Program for Multicomponent Spectrum Analysis Using Least
Squares Method. Analytical Chemistry 37, 1000–1003 (1965).
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