328 research outputs found
Validity of Ligand Efficiency Metrics
A recent viewpoint article (Improving the plausibility of success with inefficient metrics. ACS Med. Chem. Lett. 2014, 5, 2-5) argued that the standard definition of ligand efficiency (LE) is mathematically invalid. In this viewpoint, we address this criticism and show categorically that the definition of LE is mathematically valid. LE and other metrics such as lipophilic ligand efficiency (LLE) can be useful during the multiparameter optimization challenge faced by medicinal chemists
A structural snapshot of base-pair opening in DNA
The response of double-helical DNA to torsional stress may be a driving force for many processes acting on DNA. The 1.55-A crystal structure of a duplex DNA oligonucleotide d(CCAGGCCTGG)(2) with an engineered crosslink in the minor groove between the central guanine bases depicts how the duplex can accommodate such torsional stress. We have captured in the same crystal two rather different conformational states. One duplex contains a strained crosslink that is stabilized by calcium ion binding in the major groove, directly opposite the crosslink. For the other duplex, the strain in the crosslink is relieved through partial rupture of a base pair and partial extrusion of a cytosine accompanied by helix bending. The sequence used is the target sequence for the HaeIII methylase, and this partially flipped cytosine is the same nucleotide targeted for extrusion by the enzyme. Molecular dynamics simulations of these structures show an increased mobility for the partially flipped-out cytosine
Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.
Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2
The Effect of Sugar-Free Versus Sugar-Sweetened Beverages on Satiety, Liking and Wanting: An 18 Month Randomized Double-Blind Trial in Children
BACKGROUND: Substituting sugar-free for sugar-sweetened beverages reduces weight gain. A possible explanation is that sugar-containing and sugar-free beverages cause the same degree of satiety. However, this has not been tested in long-term trials. METHODS: We randomized 203 children aged 7-11 years to receive 250 mL per day of an artificially sweetened sugar-free beverage or a similarly looking and tasting sugar-sweetened beverage. We measured satiety on a 5-point scale by questionnaire at 0, 6, 12 and 18 months. We calculated the change in satiety from before intake to 1 minute after intake and 15 minutes after intake. We then calculated the odds ratio that satiety increased by 1 point in the sugar-group versus the sugar-free group. We also investigated how much the children liked and wanted the beverages. RESULTS: 146 children or 72% completed the study. We found no statistically significant difference in satiety between the sugar-free and sugar-sweetened group; the adjusted odds ratio for a 1 point increase in satiety in the sugar group versus the sugar-free group was 0.77 at 1 minute (95% confidence interval, 0.46 to 1.29), and 1.44 at 15 minutes after intake (95% CI, 0.86 to 2.40). The sugar-group liked and wanted their beverage slightly more than the sugar-free group, adjusted odds ratio 1.63 (95% CI 1.05 to 2.54) and 1.65 (95% CI 1.07 to 2.55), respectively. CONCLUSIONS: Sugar-sweetened and sugar-free beverages produced similar satiety. Therefore when children are given sugar-free instead of sugar-containing drinks they might not make up the missing calories from other sources. This may explain our previous observation that children in the sugar-free group accumulated less body fat than those in the sugar group.<br /
Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia
Fragment-based drug discovery (FBDD) is well suited for discovering both drug leads and chemical probes of protein function; it can cover broad swaths of chemical space and allows the use of creative chemistry. FBDD is widely implemented for lead discovery in industry but is sometimes. used less systematically in academia. Design principles and implementation approaches for fragment libraries are continually evolving, and the lack of up-to-date guidance may prevent more effective application of FBDD in academia. This Perspective explores many of the theoretical, practical, and strategic considerations that occur within FBDD programs, including the optimal size, complexity, physicochemical profile, and shape profile of fragments in FBDD libraries, as well as compound storage, evaluation; and screening technologies. This:compilation of industry experience in FBDD will hopefully be useful for those pursuing FBDD in academia
Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia
Prognostic relevance of Centromere protein H expression in esophageal carcinoma
<p>Abstract</p> <p>Background</p> <p>Many kinetochore proteins have been shown to be associated with human cancers. The aim of the present study was to clarify the expression of Centromere protein H (CENP-H), one of the fundamental components of the human active kinetochore, in esophageal carcinoma and its correlation with clinicopathological features.</p> <p>Methods</p> <p>We examined the expression of CENP-H in immortalized esophageal epithelial cells as well as in esophageal carcinoma cells, and in 12 cases of esophageal carcinoma tissues and the paired normal esophageal tissues by RT-PCR and Western blot analysis. In addition, we analyzed CENP-H protein expression in 177 clinicopathologically characterized esophageal carcinoma cases by immunohistochemistry. Statistical analyses were applied to test for prognostic and diagnostic associations.</p> <p>Results</p> <p>The level of CENP-H mRNA and protein were higher in the immortalized cells, cancer cell lines and most cancer tissues than in normal control tissues. Immunohistochemistry showed that CENP-H was expressed in 127 of 171 ESCC cases (74.3%) and in 3 of 6 esophageal adenocarcinoma cases (50%). Statistical analysis of ESCC cases showed that there was a significant difference of CENP-H expression in patients categorized according to gender (<it>P </it>= 0.013), stage (<it>P </it>= 0.023) and T classification (<it>P </it>= 0.019). Patients with lower CENP-H expression had longer overall survival time than those with higher CENP-H expression. Multivariate analysis suggested that CENP-H expression was an independent prognostic marker for esophageal carcinoma patients. A prognostic value of CENP-H was also found in the subgroup of T3~T4 and N0 tumor classification.</p> <p>Conclusion</p> <p>Our results suggest that CENP-H protein is a valuable marker of esophageal carcinoma progression. CENP-H might be used as a valuable prognostic marker for esophageal carcinoma patients.</p
DNA replication licensing and cell cycle kinetics of oligodendroglial tumours
The convergence point of growth-signalling pathways that control cell proliferation is the initiation of genome replication, the core of which is the assembly of pre-replicative complexes (pre-RCs), resulting in chromatin being ‘licensed’ for DNA replication in the subsequent S phase. The Mcm2–7 complex is a core constituent of the pre-RC, whose recruitment to replication origins is dependent on the Cdt1 loading factor. Geminin is a potent inhibitor of the initiation of DNA replication by preventing Mcm2–7 assembly at origins via its interaction with Cdt1, ensuring genomic integrity through suppression of re-initiation events in S phase. Here we investigate the regulation of Ki67, Mcm2, p21, caspase 3 and Geminin in a series of 55 oligodendrogliomas to provide an integrated picture of how cellular proliferation and programmed cell death are dysregulated in these tumours. Geminin does not behave as an inhibitor of cell proliferation, its labelling index rising with increasing growth fraction as defined by Ki67 or Mcm2 expression. Geminin is expressed in a higher proportion of cells in higher grade tumours (P<0.001) and shows a strong correlation to proliferation and replication licensing (P<0.01), but not apoptosis. Increasing tumour anaplasia is not associated with loss of Geminin. Importantly, the G1 phase of the proliferative cell cycle, as assessed by the Geminin/Ki67 ratio, shortens with increasing anaplasia, providing new potential algorithms for prognostic assessment. Origin licensing proteins thus provide powerful novel tools for assessment of tumour cell cycle kinetics in routinely processed surgical biopsy material
Computational Fragment-Based Binding Site Identification by Ligand Competitive Saturation
Fragment-based drug discovery using NMR and x-ray crystallographic methods has proven utility but also non-trivial time, materials, and labor costs. Current computational fragment-based approaches circumvent these issues but suffer from limited representations of protein flexibility and solvation effects, leading to difficulties with rigorous ranking of fragment affinities. To overcome these limitations we describe an explicit solvent all-atom molecular dynamics methodology (SILCS: Site Identification by Ligand Competitive Saturation) that uses small aliphatic and aromatic molecules plus water molecules to map the affinity pattern of a protein for hydrophobic groups, aromatic groups, hydrogen bond donors, and hydrogen bond acceptors. By simultaneously incorporating ligands representative of all these functionalities, the method is an in silico free energy-based competition assay that generates three-dimensional probability maps of fragment binding (FragMaps) indicating favorable fragment∶protein interactions. Applied to the two-fold symmetric oncoprotein BCL-6, the SILCS method yields two-fold symmetric FragMaps that recapitulate the crystallographic binding modes of the SMRT and BCOR peptides. These FragMaps account both for important sequence and structure differences in the C-terminal halves of the two peptides and also the high mobility of the BCL-6 His116 sidechain in the peptide-binding groove. Such SILCS FragMaps can be used to qualitatively inform the design of small-molecule inhibitors or as scoring grids for high-throughput in silico docking that incorporate both an atomic-level description of solvation and protein flexibility
A systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes
<p>Abstract</p> <p>Background</p> <p>The major metabolic complications of obesity and type 2 diabetes may be prevented and managed with dietary modification. The use of sweeteners that provide little or no calories may help to achieve this objective.</p> <p>Methods</p> <p>We did a systematic review and network meta-analysis of the comparative effectiveness of sweetener additives using Bayesian techniques. MEDLINE, EMBASE, CENTRAL and CAB Global were searched to January 2011. Randomized trials comparing sweeteners in obese, diabetic, and healthy populations were selected. Outcomes of interest included weight change, energy intake, lipids, glycated hemoglobin, markers of insulin resistance and glycemic response. Evidence-based items potentially indicating risk of bias were assessed.</p> <p>Results</p> <p>Of 3,666 citations, we identified 53 eligible randomized controlled trials with 1,126 participants. In diabetic participants, fructose reduced 2-hour blood glucose concentrations by 4.81 mmol/L (95% CI 3.29, 6.34) compared to glucose. Two-hour blood glucose concentration data comparing hypocaloric sweeteners to sucrose or high fructose corn syrup were inconclusive. Based on two ≤10-week trials, we found that non-caloric sweeteners reduced energy intake compared to the sucrose groups by approximately 250-500 kcal/day (95% CI 153, 806). One trial found that participants in the non-caloric sweetener group had a decrease in body mass index compared to an increase in body mass index in the sucrose group (-0.40 vs 0.50 kg/m<sup>2</sup>, and -1.00 vs 1.60 kg/m<sup>2</sup>, respectively). No randomized controlled trials showed that high fructose corn syrup or fructose increased levels of cholesterol relative to other sweeteners.</p> <p>Conclusions</p> <p>Considering the public health importance of obesity and its consequences; the clearly relevant role of diet in the pathogenesis and maintenance of obesity; and the billions of dollars spent on non-caloric sweeteners, little high-quality clinical research has been done. Studies are needed to determine the role of hypocaloric sweeteners in a wider population health strategy to prevent, reduce and manage obesity and its consequences.</p
- …
