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Abstract 

Fragment-based drug discovery (FBDD) is well suited for discovering both drug leads and 

chemical probes of protein function: it can cover broad swaths of chemical space and allows 

the use of creative chemistry. FBDD is widely implemented for lead discovery in industry, 

but is sometimes used less systematically in academia. Design principles and implementation 

approaches for fragment libraries are continually evolving, and the lack of up-to-date 

guidance may prevent more effective application of FBDD in academia. This Perspective 

explores many of the theoretical, practical, and strategic considerations that occur within 

FBDD programs, including the optimal size, complexity, physicochemical profile, and shape 
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profile of fragments in FBDD libraries, as well as compound storage, evaluation, and 

screening technologies. This compilation of industry experience in FBDD will hopefully be 

useful for those pursuing FBDD in academia. 

 

Rules are for the obedience of fools and the guidance of wise men. 

Harry Day, Royal Air Force (1898-1977) 

 

Introduction  

 

As academia expects to play an increasing role in target validation and drug discovery, 

lessons that have been hard won in industry must become available so that they can be 

adopted and built on, and not poorly implemented or wastefully reinvented. Fragment-based 

drug discovery (FBDD) has emerged over the last 20 years as a highly successful way to find 

quality leads for subsequent optimization into drug candidates and approved new medicines. 

FBDD involves screening compounds that generally have fewer heavy atoms than is typical in 

a high throughput screening collection. Hit-identification methods must be adapted for the 

smaller size of fragments, and so require sensitive biophysical methods or higher 

concentration biochemical assays.  

 

In this Perspective we have tried to collate the collective experiences of authors from several 

companies intimately involved in the development of FBDD so as to help the wider adoption 

and effective implementation of FBDD in academia and smaller start-ups. 

 

In theory, a well-chosen fragment library samples an astronomically greater proportion of 

chemical space than a well-chosen high throughput screening (HTS) library can ever do.1,2 



 

 

This gives researchers the confidence that there will be fragments in the library that sample 

chemical space as thoroughly as possible. As a result, fragment hits form high-quality 

interactions with the target, usually a protein, despite being weak in potency.3 In fact, hit rates 

from fragment screens are sometimes used to assess the chemical tractability of a target. 

Fragment hits often show unique, often enthalpy-driven thermodynamic binding profiles.4 

Even small fragments offer enormous scope for growing into larger molecules.  

 

Structure-based drug design (SBDD) is nearly always used to help focus synthetic exploration 

of the fragment for ways to boost binding affinity and guide other properties needed for a 

successful drug.5 The careful use of SBDD allows medicinal chemists to control the physical 

properties of the growing fragment, ensuring that any additional molecular weight and 

lipophilicity also produces an acceptable increase in affinity.6 Ligand efficiency metrics are 

often used to judge whether increases in affinity are acceptable.7 As mentioned above, an 

alternative use of fragments is to assess the chemical tractability of a target,8 but the design 

and screening principles discussed here are broadly the same for such usage.  

 

 

Design principles for fragment libraries 

 

In 2003, Congreve et al. analyzed the results from a relatively small number of fragment 

screens and proposed that “hits seem to obey, on average, a “Rule of Three (RO3)” in which 

molecular weight <= 300 Daltons, the number of hydrogen bond donors <=3, the number of 

hydrogen bond acceptors is <=3 and cLogP is <=3”.9 The molecular weight and cLogP 

criteria were enthusiastically adopted by the fragment community, whereas the hydrogen 

bond criteria have been less frequently used, in part because of ambiguities in the way 



 

 

acceptors and donors are defined.10 Ten years later, the RO3 concept is still widely employed, 

but the successful design of fragment libraries incorporates many other factors, informed by 

years of fragment screening. 

 

The first consideration is the number of compounds to be included in the library; this is in part 

driven by the detection technology to be used in fragment screening. Higher throughput 

techniques, such as high concentration screening (HCS) using for example a biochemical 

assay, are not usually as sensitive as lower throughput biophysical techniques. In general, less 

sensitive techniques require more potent fragments which are likely to be more complex (that 

is, larger) compounds. (See fragment complexity section below.)11 This in turn requires larger 

libraries, as the probability of any one fragment being a hit exponentially declines with the 

increased complexity of the ligand. More typically, fragment libraries are screened using 

sensitive biophysical techniques and the fragment library need only consist of a few thousand 

compounds with molecular weights between about 140 and 230 Daltons.  

 

Other factors that will be discussed in detail in this article include ensuring that libraries: 

(i) Sample relevant chemical space by including key pharmacophores that can 

drive fragment binding. 

(ii) Contain an appropriate size distribution and a balance of differently shaped 

fragments (see section on 3D metrics) of appropriate complexity. Overly 

complex fragments have decreased hit rates due to functionalities that interfere 

with binding; overly flexible ones could have lower affinities due to the 

entropic costs of binding. 

(iii) Contain a diversity of synthetically accessible growth vectors so that fragment 

hits can be effectively optimized into lead compounds.12 



 

 

(iv) Avoid groups known to be associated with high reactivity, aggregation in 

solution, or persistent false positive data.13 

 

Additionally, fragment libraries will typically be subjected to extensive initial and ongoing 

quality control (QC) analyses under conditions relevant to both the storage and screening of 

the samples. These should include quantitative assessments of the purity, identity, stability 

and solubility of the fragments, together with more specific analyses such as the aggregation 

properties of the fragments.  

 

For difficult targets, such as protein-protein interactions, a good library offers the highest 

chance of identifying fragment hits that might be optimizable into lead compounds. For more 

tractable targets, even relatively poorly constructed libraries will yield some fragment hits, but 

the optimization of those hits into high quality lead compounds will still be heavily dependent 

on the quality and diversity of the output from the fragment screen.  

 

 

Screening technologies 

 

Technologies used for fragment screening must be compatible with the smaller size, reduced 

complexity and consequently lower affinity of fragments. While HTS assays often identify 

compounds with strong affinity (10 µM is a typical lower limit), fragment hits typically have 

weaker affinities in the 100 µM – 10 mM range, and thus the screening methodology must 

provide 100-1000 fold higher sensitivity. Thus, while HTS routinely use biochemical assays, 

fragment screening generally utilizes more sensitive biophysical technologies, as 

demonstrated by polls conducted on the blog Practical Fragments (Figure 1.)14 



 

 

 

 

 

 

Figure 1. Poll results on the Practical Fragments blog on the use of fragment screening 

techniques. SPR – surface plasmon resonance based biosensor technology, MS – mass 

spectrometry, ITC – isothermal titration calorimetry, Affinity – (AC) affinity 

chromatography, CE – capillary electrophoresis, BLI – biolayer interferometry, MST - 

microscale thermophoresis. Results were collected from 97 responders split roughly evenly 

between academia and industry. 

 

In 2011 SPR and ligand-detected NMR were clearly the most popular techniques followed by 

the thermal shift assay. The overall picture had not changed very much in 2013; however, the 

use of functional biochemical screening and X-ray crystallography was clearly increasing. 

The increase in functional biochemical screening may be due to improved diligence in 

avoiding false positives, the ease of running biochemical screens and/or the desire to use an 

orthogonal screen to a biophysical method. X-ray crystallography is less often used for 



 

 

primary screening because of its lower throughput. The increasing use of X-ray 

crystallography is therefore more likely attributable to the importance of structural 

information for effective FBDD. It should be noted, however, that X-ray crystallography 

techniques are moving towards higher-throughput as exemplified by the CSIRO Collaborative 

Crystallization Centre in Melbourne, Australia. Similar reasoning applies to protein-detected 

NMR and ITC reaching 30% and 20%, respectively in 2013. These methods are also often 

used as follow-up assays (structural and thermodynamic characterization) rather than primary 

screening technologies due to the demands for protein labeling and/or quantity.   

 

Those pursuing FBDD increasingly use orthogonal methods to assess hits: the average 

number of methods used increased from 2.4 in 2011 to 3.6 in 2013.14 Of course, only so much 

can be read into a self-selected poll on a blog. However, similar results were observed when 

Swain analyzed 165 published fragment screening programs reporting 620 hits against 116 

different targets. In particular, individual programs employ multiple techniques (Figure 2).15 
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Figure 2. Fragment screening technologies used in published FBDD studies (adapted from ref. 

15, November 2013)  

 

Based on these analyses it seems that the major screening technologies in use for FBDD are 

SPR, ligand- and protein-detected NMR, X-ray crystallography, thermal shift and biochemical 

assays. Since all of these methods have been extensively reviewed previously13,16 here we 

focus only on compound library related issues such as assay sensitivity (i.e., the ability to 

detect weak hits), specificity (i.e., the ability to discriminate between separate binding events), 

throughput and hit rate (Table 1). The propensity for false positives / false negatives in 

particular can be operator-dependent and even subjective and depends upon a definition of 

“hit.” For example, biochemical screens will tend to have a higher false negative rate 

compared to NMR because of the lower sensitivity rather than a particular issue that can be 

solved by assay design. On the other hand, the false positive rate can be strongly influenced 

by assay format and compound selection. 

 

Method Sensitivity 

limit 

Specificity 

assessment 

Throughput Structural 

information 

Propensity for 

false positive/ 

false negative 

Biochemical high M + high none high FP/FN 

Ligand-NMR low mM - medium some medium FP 

Protein-

NMR 

low mM + low high low FP/FN 

SPR high M + medium  none medium FP 

Thermal shift 

high M, 

low mM 

- high none high FP/FN 



 

 

X-ray mid mM  + low high low FP/ high FN 

 

Table 1. Sensitivity limit, feasibility of assessing specificity, throughput, structural 

information and false positive (FP) and false negative (FN) information on technologies most 

frequently used for fragment screening. The table gives an indication of typical output from 

properly configured experiments.  

 

The use of particular libraries for different screening technologies is not strictly necessary as 

reflected in general fragment libraries commercialized by many vendors and screened in 

multiple FBDD programs. However, the different sensitivities and specificities of the multiple 

technologies do impact the overall design principles of libraries (Figure 3). The sensitivity 

and specificity of the given screening technology determines the assay concentration that 

should be used for the identification of active fragments. To reach this concentration the 

library should contain fragments with adequate solubility. Since high solubility is reliant on 

appropriate physicochemical properties, this requirement inevitably limits the distribution of 

MW and logP of the library screened. Consequently, the affinity of fragment hits that can be 

found is impacted by the screening method used because of the requirements of the initial 

library selection.  

 

 



 

 

Figure 3. Relationship of assay sensitivity and specificity and physicochemical properties of 

the screening library. Sensitivity and specificity of the assay technology affect the solubility 

requirements for the library through the assay concentration needed for the detection of a 

binding event. These in turn influence the molecular weight, logP and likely affinity range of 

fragments from the library that sets limits for the assay concentration used to identify suitable 

hits.  

 

However, varying attributes of the most common screening technologies (summarized in 

Table 1) do affect the kinds of hits, false positives, and false negatives that will emerge from 

screening a library.  

 

Different levels of sensitivity will influence the optimal concentration of the compounds to be 

screened. NMR, X-ray and thermal shift assays are routinely performed with millimolar 

compound concentrations, while SPR and especially biochemical assays  use high micromolar 

concentrations. In addition, some screening methods are more tolerant of lower solubility 

compounds than others. For example, X-ray crystallography requires compounds to have high 

occupancy in the protein in order for a hit to be detected and thus requires high solubility, 

whereas ligand-observed NMR can identify fragments that bind with much lower occupancy.  

 

Thus, the sensitivity and specificity of the assay technologies can require different 

physicochemical properties of the fragment library. In addition, the false positive/false 

negative rates are influenced by the characteristics of the fragment library screened. Many 

false hits are due to a compound’s interference with detection technology in a way that 

wrongly suggests interaction with the target protein. 

 



 

 

Promiscuity is generally considered to be a deleterious property of drug leads except in cases 

where polypharmacology may be desired. However, in the context of fragment screening, the 

situation is more complicated. One source of promiscuity can arise from the fragment itself, 

whereby some types of molecules (e.g. promiscuous 2-aminothiazoles, or PrATs)17 are 

frequent hitters in a broad range of assays. However, as some approved drugs contain 2-

aminothiazoles, it is possible to evolve selectivity from such promiscuous starting points. The 

fact that an aminothiazole has many H-bond interaction opportunities suggests that 

substitution on one of the donor or acceptor atoms may well give the first step towards 

selectivity. Certain small halogenated fragments such as 4-bromopyrazole have also been 

reported as being promiscuous.18 The opportunity for building in selectivity to promiscuous 

kinase fragment hits has been widely demonstrated19 while Merck has provided a further 

example of this approach with the phosphodiesterase PDE10.20  

 

It is important to distinguish between such promiscuous fragments that may bind selectively 

to multiple sites on different proteins from fragments that act pathologically. These “frequent 

hitters” include PAINS (Pan Assay INterference compounds), which often react covalently 

with proteins or interfere with the assay, 21,22 and aggregators, which are especially 

problematic at high concentrations.23 Although the structural moieties in PAINS were 

identified in a biochemical assay using only one detection technology, these compounds have 

been reported to be active in many different assays and are often missed by reactivity filters.21  

 

Finally, the throughput of the screening technology obviously impacts the size of the library 

screened. These factors together are reflected in the hit rates observed for fragment libraries 

screened against multiple targets using different screening technologies (Table 2). 

 



 

 

Library Number of 

fragments 

Technology # 

screens 

Hit rate Ref. 

Min Max Average 

AstraZeneca 600-40000 Biochem 7 0.2% 33% 7% 24 

Genentech Not stated SPR 13 2.6% 14.9% 7.5% 25 

GSK kinase* 1064 Biochem 30 2.2% 62.2% 26.2% 26 

Novartis 2826 NMR Not 

stated 

3% 30% 2-8% 27 

Pfizer 2592 NMR 13 2.8% 12.6% 6.9% 28 

Vernalis 1063 NMR 12 0.4% 7.3% 3.2% 29 

 

Table 2. Hit rates observed for fragment libraries screened against multiple targets using 

different screening technologies. *Note the GSK kinase library was specifically selected to 

have likely kinase binding motifs, hence the high hit rate. 

 

It should also be noted that the definition of a screening hit is subjective and often influenced 

by the goals and constraints of the project as well as technical skills and expertise of relevant 

team members.  

While using screening technologies in parallel can compensate for weaknesses in each assay 

used, selection of particular screening technologies is not always straightforward since 

performance depends on the assay conditions, the library and the nature of the target itself. In 

the next section we summarize case studies using different technologies, screening the same 

library against the same target. These case studies illustrate the value of orthogonal assays to 

help pinpoint true hits. However, some promising starting points may not appear active in all 

of the assays, so judicious follow-up is required. 

 



 

 

Case studies with two or more screening technologies 

 

 HIV integrase: Wielens and coworkers screened a 500 member fragment library 

against HIV integrase using STD-NMR and SPR.30 NMR screening was performed 

with 50 cocktails of 10 compounds (each at a concentration of 1 mM) and identified 

84 active fragments from which 62 were validated by protein-observed NMR 

experiments. In a parallel screening effort, the same library was tested as individual 

compounds by SPR at 500 M concentration and yielded 16 hits validated by 

concentration-dependent SPR studies. Interestingly, no hits were confirmed by both 

the STD-NMR and SPR assays. Furthermore, the 6 hits co-crystallized from the 16 

SPR hits did not overlap with the 15 hits co-crystallized from the 62 NMR hits. In this 

case the SPR hit rate was significantly lower (3%) than that from NMR (13%). In 

addition to different screening concentrations and buffers (pH 7.4 vs pH 8.5 for SPR 

and NMR screening, respectively) assay sensitivity might be one of the major reasons 

for the significantly different hit rates; the NMR screen was more sensitive to weak 

binders.  

 Checkpoint Kinase 2: Montfort et al. investigated the performance of biochemical 

and thermal shift assays by screening 1869 fragments against Checkpoint Kinase 2.31 

Biochemical screening utilized an AlphaScreen assay performed at 300 M compound 

concentration and resulted in 45 non-aggregating hits out of which 20 did not cause 

assay interference as validated in dose-response studies. The thermal shift assay was 

carried out at a considerably higher compound concentration of 2 mM and gave 63 

hits, a significantly higher hit rate (3.4%) as compared to that of the AlphaScreen 

assay (1.1%). Comparing the hit lists, 12 fragments were identified by both assays and 

interestingly the authors found good correlation between Tm and IC50 values. The 



 

 

majority of hits, however, were found by only one technology. The biochemical and 

thermal shift assays respectively found 31 and 49 non-overlapping active fragments. 

Crystallization efforts were significantly more successful for overlapping hits since 8 

of the 12 dual hits were confirmed by X-ray crystallography compared to only one 

fragment out of the 49 identified by the thermal shift assay alone. The need for 

different screening concentrations was due to the limited DMSO tolerance of the 

biochemical assay although it showed generally higher sensitivity towards less active 

hits. 

 p38α kinase: The BioFocus fragment library was screened against p38α kinase using 

SPR and two biochemical assays including a mobility shift and fluorescence life time 

assays.32 266 fragments from the BioFocus library were screened by SPR in 200 M 

and 1 mM compound concentrations and gave 102 primary actives. The mobility shift 

assay was performed in both 200 M and 1 mM concentrations and identified 39 

validated hits. In analyzing the hit lists the authors concluded that only 9 out of the 

102 SPR hits were found by the mobility shift assay. In contrast, there was only one 

fragment out of the 10 identified by the biochemical assay that was missed by SPR. 

Hits identified by the mobility shift assay were also investigated by a fluorescence life 

time assay that confirmed 80% of them. These results indicate that the hits from the 

two biochemical assays correlate well but these are very different from those of the 

SPR assay. 

 MMP12 and Trypsin: Boettcher and coworkers tested 352 fragments at 1 mM 

concentration using three biochemical (fluorescence life time, fluorescence intensity, 

mobility shift) and two biophysical tests (SPR and protein- detected NMR) against 

Matrix metalloprotease MMP12 and Trypsin.33 The authors did not compare the hit 



 

 

lists quantitatively but focused the comparison on false positive (FP) and false 

negative (FN) rates compared to NMR actives as reference (Table 3). 

 

Technology 

MMP12 Trypsin 

FP FN FP FN 

FLT 13% 0% 13% 8% 

FI 5% 7% 8% 13% 

MSA 7% 15% 3% 9% 

SPR 11% 7% 3% 27% 

 

Table 3. False positive (FP) and false negative (FN) rates relative to NMR observed 

for different screening technologies (FLT – fluorescence life time, FI – fluorescence 

intensity, MSA – mobility shift assay) used for fragment screening against MMP12 

and Trypsin 

 

Comparison of FP and FN data revealed that biochemical assays performed similarly 

and SPR was comparable to them. The high false negative rate in the trypsin SPR 

assay was attributed to the weak response level due to low protein loading of the chip. 

The authors emphasized the importance of high solubility – influenced by the 

composition of the library - that should be determined by NMR rather than using a 

dynamic light scattering (DLS) assay. 

 HSP90: Hubbard et al. screened 111 Vernalis fragments against HSP90 using NMR, 

SPR, thermal shift and biochemical assays.34 The thermal shift assay (TSA) was 

conducted at 2 mM concentration; all the other tests were run at 500 M. The authors 

analyzed the correlation between different hit lists (Table 4). 



 

 

 

 SPR Biochem TSA 

NMR 90% 74% 74% 

SPR - 73% 76% 

Biochem  - 73% 

 

Table 4. Overlap between the hit lists of different screening technologies used for the 

identification of HSP90 inhibitors 

 

These results suggest that hits identified by NMR and SPR largely overlapped, but the 

hits of the third biophysical method (TSA) differed somewhat. This difference can be 

rationalized by the lower sensitivity of the thermal shift assay. Similarly, the 

correlation between biochemical and biophysical hits was also lower. 

 Endothiapepsin: Schiebel et al. screened a 361 member fragment library against 

endothiapepsin using biochemical and two biophysical techniques (STD NMR and 

thermal shift assay) in 1mM, 300 M and 2.5 mM concentrations, respectively.35 The 

highest hit rate was found for biochemical screening (17%) followed by NMR (11%) 

and thermal shift assay (8%). It is important to note, however, that the authors neither 

tested assay interference nor aggregate formation. Hit lists obtained by the three 

screening methods were compared (Figure 4). 



 

 

 

Figure 4. Venn diagram of biochemical, NMR and thermal shift hit lists obtained by 

screening against endothiapepsin 

 

The different assays were performed under similar conditions including the buffers. 

Screening concentrations and also hit selection criteria, which are usually based on 

previous screening experience, were different. More importantly, however, the 

methodologies applied show very different sensitivity in detecting weak binders. 

These factors likely explain the limited overlap between the hits lists. The authors used 

the hit lists from all three assays to pick which compounds to explore further with 

crystallography. In contrast to the biochemical hits, all of the unique NMR and more 

than half of the unique thermal shift hits were crystallized successfully.  

 Multitarget studies: In a large scale study a Novartis team reported screening a 1400 

member fragment library in 35 campaigns using biophysical (NMR, SPR, TSA) and 

biochemical (high concentration screening, CE, TR-FRET) assays.36 One of the major 

conclusions of this study is that different screening technologies provide hits with 

different physicochemical profiles on a given target, although there is a pronounced 

target dependency as well: NMR identified larger and more hydrophobic hits than TR-



 

 

FRET on one target but this was reversed on another. Although hit rates generally 

increased for larger and more lipophilic molecules, SPR hit rates were typically higher 

than TSA hit rates. This was partially rationalized by the non-specific binding of 

fragments to the chip surface. The lower hit rates obtained by thermal melting are 

likely a result of uncertainty as to how to handle results indicating thermal 

stabilization with lower Tm when a ligand binds. The complementary benefits of using 

both a biochemical and a biophysical assay are highlighted as being particularly 

effective in the detection of genuine fragment hits. (This has also been pointed out by 

the GSK group 37 in a similar meta-analysis which incorporates a broad discussion of 

the use of FBDD techniques.) The Novartis group does conclude that some fragments 

are “frequent hitters” although they consider them as “privileged fragments”, because 

there is often an opportunity to build selectivity while evolving fragments.  

 

Analyzing the active fragments from 35 campaigns on 20 targets it was interesting to 

see that 63% of the screened fragments never came up as hits. In contrast, the team 

identified privileged fragments that were found to be high value library members 

because they were active on more than one target.  For more detailed analysis the 

authors selected two campaigns that used five different screening technologies and 

investigated all of their combinations. This analysis revealed that there is better 

complementarity between biochemical and biophysical tests than two biophysical 

methods. Therefore the authors suggested that a combination of biochemical and 

biophysical technologies would provide greater chemical coverage. It seems likely that 

the limited overlap of biochemical and biophysical methods is strongly related to the 

different sensitivity and specificity of these techniques, and that should be considered 

when designing screening libraries. On the other hand, higher assay concentrations 



 

 

available for biophysical tests might generate higher numbers of false positives that 

could be reduced by the use of orthogonal techniques. 

 

It is important to emphasize that a legitimate hit may be missed in orthogonal assays, in 

particular when one method is more sensitive than another. Demanding agreement in all 

assays will limit detection to the least sensitive method, which may not be desirable, since 

even extremely weak fragments with no functional activity can be progressed to potent 

leads.38  

 

 

Fragment complexity and ligand efficiency 

  

Hann et al. introduced the concept of Molecular Complexity and its application to FBDD as a 

formalism for helping to understand the challenges and opportunities of fragments.11 This 

concept was inspired by examining protein-ligand interactions in crystal structures, which 

revealed that most interactions observed were productive. Unfavorable interactions either 

completely prevent binding or require ligands and proteins to adopt suboptimal (high energy) 

configurations. This is observed most obviously if water is considered to be the ultimate high 

concentration fragment, present at 55.5M! Tightly bound water molecules maximize their 

number of interactions (up to four) and water networks are built around these – see for 

example the combined use of theory and experiment to explore such networks in a GPCR.39 

The complexity model separates the probability of a maximally correct binding match of 

possible interacting pharmacophore points from the separate probability of whether the 

number and type of these interactions releases sufficient free energy to be measured in a 

biophysical experiment (Figure 5).  



 

 

 

 

 

Figure 5. Probabilities of binding and detection as a function of molecular complexity. The 

blue curve represents the probability of a ligand matching the receptor as the complexity of 

the ligand increases. The red curve represents the probability of measuring the binding of a 

ligand to the receptor as the matches increase. The green curve represents the probability of a 

“useful event” which is defined as the product of the red and blue curves. 

 

Hann et al. pointed out that there is a higher probability of a match if there are fewer 

interactions to get right, and that this is most easily achieved when fragments can make only a 

small number of interactions. Several groups have observed this relationship in their 

programs. The Astex group2 showed that the modal value of the Heavy Atom Count (HAC) 

of hits detected from many different fragment campaigns is 12 whereas the modal HAC value 

of the fragment library actually screened is 14.  The Novartis group27 observed HTS hit rates 

of 0.001% - 0.151% in the identification of ligands with an IC50 threshold in the micromolar 

range and fragment hit rates of 3% or more in NMR screening of fragments with an affinity 



 

 

threshold in the millimolar range. Consequently, the complexity model has been widely 

adopted as a central mantra of the fragment approach and a number of publications have 

looked at both its extension40 and further validation.41,42  

 

One common question is how to relate the complexity model – with its abstract representation 

of molecular interaction points – to the reality of protein-ligand interactions. Because of the 

subtlety and actual complexity of real situations, it is best to use Molecular Complexity as a 

model and not to try to relate the matches to any specific type or strength of molecular 

interactions. However, what is apparent is that molecular interactions that have higher 

information content as represented by, for example, greater directionality or charge gradient, 

are intrinsically harder to position correctly. This is why it is so important to get these 

interactions right during the fragment screening stage (or during initial fragment optimization) 

while the molecule is still unencumbered with substituents.  

 

Ultimately this approach should facilitate the identification of the most efficient optimized 

ligand by prioritizing where and how researchers should focus their efforts as they optimize 

interactions between ligand and target. Molecular interactions with little information content 

(e.g. lipophilic moieties which have minimal directional requirements) can more easily “slide” 

into matching low information regions in the binding site. Aromatic groups can also adapt to 

different environments because of the intrinsic polarizability of such moieties which may help 

to explain their prevalence in fragment hits. A further benefit of getting the maximum reward 

from initial polar interactions in a fragment is that this is generally equated with an enthalpic 

signature to the overall binding free energy. Some evidence suggests that starting with such 

optimized interactions can help minimize the entropic contributions to the free energy (often 

equated with an unwelcome increase in lipophilicity) to build the desired level of potency.4,43 



 

 

  

Ligand efficiency metrics have been widely adopted in medicinal chemistry to ensure a focus 

on an appropriate balance of physicochemical properties and potency.7 This focus is 

particularly important while developing fragments into quality leads for final optimization. 

Two metrics that are particularly useful in this context are the heavy atom adjusted Lipophilic 

Ligand Efficiency (LLEAT)44 and Group Efficiency (GE).45 The metric LLEAT (= 0.111 + 

1.37(LLE/HAC)) (where LLE is the Lipophilic Ligand Efficiency (= pKi – cLogP), sometimes 

referred to as LipE) links potency with both lipophilicity and size and is scaled so as to be 

comparable to Ligand Efficiency (LE), whereby an acceptable lower limit for good binding 

sites is considered to be 0.3. The importance of using size-adjusted lipophilic ligand 

efficiency is that the advantages gained by initially using a fragment approach can be easily 

squandered without continued focus on size.6 However, as with all such “rules”, the metrics 

are guides rather than absolutes and due care should be taken when used in a filtering context. 

GE (equal to the free energy gain for the atoms added) helps focus on the contribution of 

different parts of a lead molecule to the overall binding affinity. It is similar to Ligand 

Efficiency but focuses only on the group of atoms that have been added to an initial molecule. 

A recent example of the use of GE is provided by the Abell group during the fragment based 

discovery of leads for Pts, a potential target for tuberculosis.46 Each of these metrics focuses 

on affinity optimization rather than in vivo properties, but they do help control the 

physicochemical properties which are known to be key contributors to success in vivo.47  

 

 

Size and shape considerations 

 



 

 

The small size of fragments typically yields hits with low affinity and low specificity. These 

features can be correlated with the intrinsically low number of interactions fragments are able 

to form with proteins. Low specificity has two consequences: first, a fragment may be able to 

bind to various proteins, and second, a fragment may be able to bind to a single protein in 

several ways. In the first sense low specificity relates to the high hit rate of fragment screens 

and this is advantageous since specificity can be introduced later in fragment optimization. 

The ability of a fragment to bind to a protein in several ways can frustrate optimization 

schemes, which assume a consistent binding pose to establish structure-activity relationships. 

However, a fragment with multiple binding modes can still be useful in druggability studies. 

They can be incorporated into a well-established procedure to probe proteins with very small 

compounds, such as water and organic solvents both with experimental48 and computational 

methods.49 These compounds with few non-hydrogen atoms bind to proteins and form clusters 

whose positions coincide with those of known inhibitors. Moreover, the extension and relative 

position of these clusters carries significant information on protein druggability.50 

 

A consensus is growing over the ideal size of fragments intended for lead optimization 

projects. Very small compounds are useful in binding site detection and druggablity studies 

but are less suited for fragment screening owing to their versatile binding modes to a single 

protein. According to a Practical Fragments poll, over 85% of responders voted for a 

minimum fragment size between 5 and 10 heavy atoms.51 Clearly, the minimum size is a 

compromise between opposing requirements. One is that a better coverage of chemical space 

is available with smaller ligands as a result of lower molecular complexity; this is a 

fundamental advantage of FBDD. Other requirements are detectable affinity and specificity, 

and these favor larger compounds. As noted above, experiences with crystallographic 



 

 

fragment screens show that the highest hit rates can be achieved with compounds containing 

10-14 heavy atoms.2  

 

The expansion of a hit to a lead-like compound is facilitated by the existence of a single or at 

least a prevailing binding mode that is preserved during fragment expansion. There have been 

numerous analyses of binding mode conservation of fragments either by cutting larger ligands 

to smaller pieces or the reverse, by analyzing the interactions of larger compounds as they 

were grown from fragments. Several studies obtained direct structural information of binding 

modes. Van Molle et al. investigated the deconstruction of lead-like inhibitors of the 

pVHL:HIF-1α interaction and found that the fragments (including the smallest one with 13 

heavy atoms) maintained the binding pose observed in larger compounds.52 Fry et al. also 

investigated the dissection of inhibitors of a protein-protein interaction and found that the 

smallest fragment with detectable binding contained 20 heavy atoms and exhibited the 

binding mode observed in the full inhibitor.53 Even smaller fragments including 

phenylphosphate with only 11 heavy atoms were found to conserve both the binding site and 

the H-bonding network in the fragments and in the corresponding full length inhibitors in 

complexes with the phospho-tyrosine binding site of the SH2 domain of pp60src.54 Andersen 

et al.55 deconstructed a cyclopentapeptide chitinase inhibitor, argifin, into linear peptides and 

dimethylguanylurea. X-ray crystallographic analysis of the dissected compounds complexed 

with chitinase B1 showed that the conformations of linear peptides were similar to those in 

argifin and that dimethylguanylurea (9 heavy atoms) exhibited all significant interactions 

identified in argifin.  

 

In contrast to these results where fragments obtained by ligand dissection preserved their 

binding mode, Barelier et al. found that fragments derived from Bcl-XL inhibitors do not form 



 

 

the same interactions as in the full inhibitor; rather they all bind within a single region of the 

protein site.56 Babaoglu and Shoichet deconstructed a -lactamase inhibitor into fragments 

with 8, 11 and 14 heavy atoms and observed that the fragments did not preserve the binding 

mode corresponding to the same moiety in the full inhibitor.57 Satoh et al.58 reported multiple 

binding modes of a ligand to the Nrf2 interaction site of Keap1 and suggested that, based on 

crystallographic and computational studies, the preferred binding mode is different in solution 

and in crystals, and the latter is affected by crystal packing. 

 

In other studies of compound deconstructions, indirect evidence is used to deduce the 

existence of multiple binding modes. Barelier et al. investigated the deconstruction of 

substrates of six enzymes and observed no binding or significant loss in activity even when 

fragments included the key reactive groups.59 Brandt et al. studied the binding of compounds 

obtained by the deconstruction of HIV-1 reverse transcriptase inhibitors bound to an allosteric 

site not present in the apo form of the enzyme.60 Few of the fragment-sized compounds 

showed detectable affinity in surface plasmon resonance experiments and the authors suggest 

the absence of an efficient fragment binding hot spot at the site examined.  

 

Fragments are often optimized by growing them into larger compounds and less frequently by 

linking fragments binding in proximal protein sites. These efforts are often based on the 

assumption of binding mode conservation although this is not always explicitly verified. 

Sometimes, fragment modifications make the question difficult to answer, as the original 

fragment hit within the new compound cannot be definitely identified. Edink et al. were able 

to optimize a fragment hit (17 heavy atoms) bound to an inducible subpocket of 

acetylcholine-binding protein into a larger inhibitor. Binding mode conservation was 

demonstrated by the X-ray structure of complexes formed by the fragment and by the 



 

 

optimized compound.61 Bauman et al. optimized a fragment (9 heavy atoms) bound in three 

different ways to influenza polymerase acidic protein N-terminal endonuclease domain. A 

fragment chelated to two metal ions was selected and optimized to a larger inhibitor in which 

the binding mode of the starting fragment was preserved.62 Chen and Shoichet identified an 

unselective -lactamase inhibitor (13 heavy atoms) that was optimized into a selective CTX-

M inhibitor. Binding pose conservation was demonstrated by X-ray crystallographic analysis 

of the complexes formed by the fragment and the optimized compound.63 Orita et al. analyzed 

25 fragment optimizations where the complexes of the fragment and the optimized compound 

are both available. They showed that the average root mean square deviation of a core 

structure between fragment hit and lead is well below 1 Å and the hydrogen bonding pattern 

of the fragments is preserved in the optimized compounds.64 

 

The cited examples clearly show that fragments typically having 10 to 20 heavy atoms are 

able to bind specifically to a variety of protein binding sites including polar pockets and 

protein-protein interfaces. The specific binding is proven by the conservation of the binding 

mode as the fragments are grown to larger inhibitors. However, there are many cases where 

the binding mode of a fragment does not agree with that of the corresponding moiety in a 

larger compound. An explanation of these differences was proposed by Kozakov et al.65 based 

on the varying overlap of the bound fragments with the primary hot spot. They also propose a 

simple method based on their computational solvent mapping protocol49 to identify primary 

hot spots as sites where the highest number of clusters of various probe compounds bind. A 

possible interpretation of this finding is that a site that binds various small probes contains a 

diverse set of proximal binding functions that interact collectively with fragments having 

appropriate pharmacophore features. This explains what was convincingly shown in several 

examples that fragments bound with appropriate overlap with the hot spot of consensus 



 

 

clusters preserve their binding mode,65 while those bound at the site of other clusters may 

change their binding mode upon structure expansion. It is also consistent with the fact that 

although fragments are versatile binders with the ability to bind to various protein targets, 

they can also be evolved to higher specificity for the more druggable targets. For these latter 

proteins a primary hot spot is available that is able to bind certain fragments specifically with 

an affinity not available for the same ligands at other protein sites. 

 

Kozakov et al. argue that the intrinsic binding potential of the protein site has a decisive role 

in the conservation of the binding mode.65 They suggest that secondary binding sites tend to 

have less potential to conserve binding modes for fragments and their larger derivatives. 

Whether this is indeed the case is an important question since targeting secondary binding 

sites by fragments both in enzymes66 and in GPCRs67,68 has been gaining increased attention. 

In addition to the binding potential of the protein site, structural features of the fragments are 

also critical for both binding and specificity. An analysis of experimental fragment-protein 

complexes in the Protein Data Bank69 revealed that fragments form on average two optimal 

geometry hydrogen bonds with the protein hot spot.43 Some typical examples are shown in 

Figure 6. Binding pharmacophores that have been identified from the analysis of molecular 

interactions can be useful in the design of fragment libraries. Ideally a variety of fragments 

that contain each of the binding pharmacophores should be included in the library.70  

 

 

 



 

 

Figure 6. Crystal structures of fragments exhibiting key binding pharamcophores. Chemical 

structures are also given with the binding pharamcophore marked in blue. (a) amidine-like 

pharmacophore in beta secretase (PDB Code: 2OHK). (b) A donor acceptor pharmacophore in 

protein kinase A (PDB Code: 2UW3). 

 

The presence of a few directional polar interactions in a predominantly apolar environment 

contributes to the strength and specificity of the binding and is in line with the properties of 

hot spots.71,72,73,74 It was also found that less polar fragments tend to bind with lower affinity 

and more promiscuously.29,56,75 

 

It seems that the presence of a strong hydrogen bond in the initial fragment indicates that a 

strong anchor point is likely to be maintained.64 If the fragment does shift, it likely had 

multiple orientations in the first place, possibly disguised in poorly defined electron density. 

Alternatively, a stronger set of interactions may have been made in the optimization processes 

which overcame initial weak binding; this possibility can be particularly pertinent where 

synergy between interactions takes place, which is not possible in the smaller molecules. It is 

therefore important to continue to check ligand position and orientation throughout the 

fragment evolution process, particularly when unexpected SAR is encountered.  

 

By contrast, potency driven by lipophilicity has been well documented to be a source of non-

specific promiscuity and a good fragment hit can easily be squandered by inappropriate use of 

lipophilicity.6,41,76,77 This promiscuous binding seems intrinsic to lipophilic interactions and 

has been interpreted in the molecular complexity model as resulting from the low information 

content of such interactions.42 

 



 

 

A further topic relevant to binding specificity is the competitive or simultaneous binding of 

two or more fragments. This can happen when fragments are pooled together to improve the 

throughput of a screening technique. In ligand-observed NMR screening it is usually possible 

to identify multiple hits from a pool of fragments provided that the NMR spectra of the 

fragments do not overlap. In X-ray screening, it is important that fragments within a pool have 

shape diversity so that hits can be identified more easily. However, even a clear X-ray hit 

does not preclude the possibility that another fragment from the pool can bind at the same site. 

Further deconvolution experiments may therefore be required, and if the hit rate is high, it 

may be more efficient to screen compounds individually. The synergistic binding of two or 

more fragments may also interfere with the deconvolution of hits in X-ray screening of 

fragment cocktails. If the individual fragments do not bind strongly enough for detection they 

would be considered as false positives and yet the cooperative binding of the two fragments 

would provide valuable information to identify chemical starting points for developing potent 

inhibitors.78 One benefit of having two fragments bound to proximal sites is the possibility of 

using fragment linking, 79 a theoretically attractive concept which unfortunately is not often 

successfully achieved. The challenge of fragment linking may be that at least one fragment 

will likely bind outside the principal hot spot, making the initial pose hard to maintain when 

this fragment is expanded.65 Nevertheless, there are successful applications of fragment 

linking with significant affinity increases.80,81 In these cited examples the significant affinity 

gain is achieved by linking fragments having not more than 15 heavy atoms. Moreover, the 

linking coefficient, defined as the difference between the affinity of the final ligand and the 

sum of fragment affinities is near to the estimated rigid body entropy loss of binding82 

suggesting that fragments can sometimes be linked without introducing strain or altering 

poses. 

 



 

 

The appropriate shape of fragments garners much debate. Fragment libraries have 

traditionally been dominated by compounds with somewhat planar rings (such as 

pyrimidines), although some evidence suggests that non-aromatic compounds lead to 

improved quality of final clinical candidates.83,84 However, this evidence has been 

challenged,85 and it is fair to say that calculating physicochemical properties is no substitution 

for experimental measurements. 

 

Nonetheless, the strategy of boosting “three dimensionality” of ligands is much discussed as a 

way to reduce promiscuity and improve solubility and thus ultimately improve the 

developability of ligands. This in turn has resulted in moves to measure and increase the 3D 

character of fragments.86,87  However, this increased 3D character could result in an increase 

in the complexity of the fragments and thus lead to a reduction in the probability of any one of 

them matching the receptor. This can be partially abrogated by increasing the number of 

fragments screened, but this brings other problems in terms of the capacity of biophysical 

screening methods. Additional impetus to increase the presence of 3D fragments in libraries is 

the proposal that this leads to a broader coverage of biologically relevant chemical space and 

may be especially beneficial for challenging targets.86  Nevertheless, initial studies suggest 

that hit rates for 3D fragments are lower than those for flatter compounds and this is 

consistent with the higher complexity of 3D fragments.2 These considerations suggest that 

taking maximum advantage of FBDD hinges on a sensitive balance between complexity, size 

and diversity of fragments. 

 

 

Target related aspects 

 



 

 

It is a truth universally acknowledged that not all proteins can be targeted with small 

molecules. Those that can are referred to as “ligandable.”8 This term is preferable to the term 

“druggable,” since a target may be ligandable even though it ultimately has no role in a 

disease. Indeed, since validating a therapeutic target often first requires identifying a small 

molecule modulator, researchers usually need to establish whether a target is ligandable 

before establishing whether it is ultimately druggable. Even within target classes that have 

been shown to be ligandable there is considerable variability in the molecular weight, polarity 

and lipophilcity of typical ligands with drug-like potencies.88 Many attempts have been made 

to use computational methods to assess ligandability89,90 but fragment screening has also 

proven to be an effective experimental means to assess ligandability. Multiple studies have 

shown that the hit rate from a fragment screen correlates well with the hit rate from high-

throughput screening (HTS) and the ultimate success of lead optimization.75,89,91  

 

Some targets, such as many enzymes, have a well-defined pocket that has evolved to bind 

small molecules, so it is not surprising that many fragments bind in these substrate binding 

sites, often making some of the same interactions as the natural substrates. For example, 

screens against kinases often yield fragments that bind in the adenosine binding site, and these 

often have high ligand efficiency values. On the other hand, protein-protein interfaces often 

consist of large, flat surfaces with few or no pockets, and fragment screens against such 

targets are usually less successful. Consequently, ligand efficiency values of ligands that 

disrupt protein-protein ligands tend to be lower (see below).92 

 

Historically most FBDD programs have targeted enzymes or other soluble proteins, and 

fragment screening is much more challenging on, for example, membrane proteins. However, 

significant progress has been made in this latter area through the use of thermally stabilized 



 

 

membrane proteins which are selected by effective use of mutagenesis studies.93 After 

stabilization the protein is more amenable to standard assay techniques such as SPR, Thermal 

Shift and X-ray based FBDD experiments. 

 

One point of debate in fragment library design is whether fragment libraries should be target-

directed or general. For example, since kinases have evolved to bind ATP, it might make 

sense to design a kinase-directed library consisting of moieties that bind to the region 

responsible for binding the adenine part of ATP.94 This approach has indeed been quite 

successful, as noted in Table 2, and many companies and commercial vendors have built 

custom libraries for specific target classes. A potential drawback is that the resulting 

fragments are less likely to be novel. However, this should not necessarily be a major 

consideration as much of the intellectual property is created during fragment to lead 

optimization and beyond. For example, both vemurafenib95 and the clinical candidate 4-

amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-

yl)piperidine-4-carboxamide (AZD5363) 96 had their origins in a common 7-azaindole 

fragment, yet ultimately their structures and properties dramatically diverged. Indeed, the 

azaindole scaffold is such a fruitful source of fragments that an entire review was devoted to 

it.97 A more serious objection to target-based libraries is that sometimes the most interesting 

hits are the least expected; it is hard to design for serendipity. For example, a screen against 

PAK1 identified a fragment with scant resemblance to adenine. This binds outside the ATP-

binding site and led to allosteric molecules that are remarkably selective for the kinase.98  

 

A related issue is selectivity: how selective should a fragment hit be? Researchers accustomed 

to working with HTS hits may instinctively prefer more specific fragment hits, but as the 

azaindole discussion above demonstrates this is not necessarily justified. Indeed, on the basis 



 

 

of the molecular complexity argument, fragments should theoretically not be very selective or 

it would be impossible to get hits from a small library. That said, it is not uncommon to find 

fragments that show specificity. Bamborough and colleagues at GlaxoSmithKline 

demonstrated this experimentally by screening nearly 1000 fragments against 30 kinases.26  

These fragments were chosen to be likely to bind to the ATP hinge region of kinases, yet 

many of them proved to be quite selective. Even adenine, which should after all bind to all 

kinases, strongly inhibited less than half of them. However, when the researchers looked at 

larger molecules that contained these fragments, there was no correlation between the 

selectivity of the fragments and that of the more potent, elaborated molecules. Recent work 

from the Collins group showed similar results from fragment-to-lead programs, and also 

demonstrated that very small changes to a molecule could have drastic effects on selectivity.99 

In other words, it is possible to start with a non-selective fragment (such as 7-azaindole) and 

develop a selective inhibitor (such as vemurafenib). On the other hand, it is also all-too-

possible to start with a selective fragment and end up with a non-selective inhibitor, especially 

by adding inappropriate levels of lipophilicity. 

 

As hinted at above, one effective way to address selectivity among related targets is to 

sidestep the common active site entirely and focus on allosteric sites. Due to their ability to 

bind to small, sometimes cryptic binding sites, fragments are ideally suited for identifying 

allosteric sites. In fact, a crystallographic fragment screen from the Arnold group at Rutgers 

University revealed 16 different binding sites on HIV Reverse Transcriptase, though the 

function of many of these is uncertain.100 Allosteric kinase inhibitors are well-precedented and 

often quite selective;101 as noted above an allosteric PAK1 inhibitor derived from a fragment 

screen at Novartis appears to be >50-fold selective for the enzyme compared to 441 other 

kinases.98 Novartis has also started clinical development on an allosteric ABL inhibitor.102 



 

 

 

Allosteric modulators can also be effective against difficult targets. For example, caspases are 

a family of cysteine proteases with charged, extended binding sites, making it difficult to 

discover specific drug-like leads. A collaboration between Genentech and UCSF revealed 

fragments that bind to an allosteric site on procaspase-6 and stabilize this inactive zymogen 

form.103 Another example of using allosteric modulators to prevent enzyme activation was 

published by researchers from Astex, who performed a fragment screen against the hepatitis C 

protein HCV NS3 and found fragments that bind between the protease and helicase domains. 

These were ultimately optimized to low nanomolar potency with cell-based activity.104 

 

As mentioned above, protein-protein interactions (PPIs) tend to be more difficult than 

conventional targets, as reflected in lower hit rates from both high-throughput and fragment 

screens. Nonetheless, fragment screens have been successful in multiple cases.105 One of the 

most prominent examples is work done by researchers at AbbVie in which they used SAR by 

NMR to identify fragment hits against the anti-cancer target BCL-xL. After extensive 

medicinal chemistry, these were ultimately optimized to navitoclax.106 Further modification of 

this scaffold led to venetoclax, 107 which is selective for the related protein BCL-2 and is 

reportedly on track for FDA approval in 2016. Fragment screening has also been successfully 

applied to discover inhibitors against another member of this protein family, MCL-1108,109 as 

well as against RAD51.110 

 

Due to the difficult nature of PPIs, higher concentrations of fragments are often necessary to 

find hits with even low ligand efficiency. Carefully done, however, this can be highly 

effective, as demonstrated by a recent study from researchers at Astex. An NMR screen of 

fragments at 10 mM revealed a very weak hit against the anti-apoptotic proteins cIAP1 and 



 

 

XIAP. Unlike most previously reported molecules, this had comparable activity against both 

proteins, and structure-guided medicinal chemistry was successful at generating nanomolar 

inhibitors with cell-based activity.38 

 

Another difficult target that has recently succumbed to fragments is Ras. Researchers at 

Genentech and Vanderbilt University independently used NMR screening to identify 

fragments that bind to a small surface-exposed pocket and block interactions with the 

exchange factor SOS.111,112 

 

For particularly difficult targets, covalent bond formation can be effective at identifying low-

affinity fragments; the bond can stabilize interactions that may be too weak to detect using 

other approaches. This was the idea behind Tethering, which relies on thermodynamically-

driven disulfide exchange between a cysteine residue in the protein and libraries of disulfide-

containing fragments.113,114 The challenge with disulfide bonds is that they need to be 

replaced to be effective in cells, let alone animals. However, researchers at UCSF 

demonstrated that this replacement could be accomplished against a mutant form of K-Ras 

containing an activating cysteine residue.115 

 

Covalent drugs have undergone a renaissance of sorts, and this has propagated through to 

libraries of designed covalent fragments. The Statsyuk group at Northwestern University has 

designed libraries of acrylate-containing fragments and shown that selective inhibitors can be 

found against different proteins.116 Unlike in the case of Tethering, these fragments form 

irreversible bonds to the protein, so it is important that the intrinsic reactivities of the 

fragments do not vary too much. Somewhat sidestepping this issue, the Taunton group at 

UCSF has generated cyanoacrylamide-containing fragments, which can form reversible 



 

 

covalent bonds with cysteine residues. These were used to develop potent, selective kinase 

inhibitors.117 Computational methods can be successfully applied to identify covalent 

inhibitors, and a program developed by Shoichet and colleagues at UCSF is freely 

available.118 

 

 

Synthesis related aspects  

 

When a fragment screening library is used to provide hits to start a drug discovery program it 

is important that the hits obtained are “optimizable”. That is, there is a high likelihood that 

when a fragment binds to the target protein there will be accessible positions available to 

further exploit the hit chemically. This concept of optimizability has been built into fragment 

screening sets in a number of different ways. One approach is to ensure that a fragment has a 

defined synthetic handle.16 One challenge here is that polar moieties such as acids or amines 

can often provide the key interaction in a lower molecular weight fragment and any synthetic 

modification could change the nature of the group (e.g. by amide formation).119 

Schuffenhauer et al.27 overcame this problem by developing a reaction dictionary that allowed 

the searching of fragments that mask the reactive functionality. Lau et. al.28 used experienced 

medicinal chemists to judge the chemical expandability of fragments in the development of a 

fragment screening library at Pfizer. It is also possible to provide an in silico assessment of 

“optimizability”37 to guide in the triaging of thousands of potential fragments. A RECAP 

like120 approach was used to identify the “core” for each fragment by trimming back to 

potential reactive groups and a substructure search in internal and external data sources was 

able to identify the number of substitution positions on the fragment, allowing ranking of 

fragments. Cox et al. have described the design of a poised fragment library where fragments 



 

 

derived from simple synthetic reactions are included in the library so as to facilitate the rapid 

synthesis of analogs of fragment hits.121   

 

Historically, fragment libraries have used substructures derived from drugs as one of the 

sources of ideas.122 Pihan et al.123 have provided a set of commercially available fragments 

based on substructures of drugs. However, Morley et al.86 have analyzed a number of 

fragment libraries using principal moments of inertia (PMI) plots and suggest that they have 

limited shape diversity when compared to fragments derived from compounds tested in 

humans. They describe the 3D Fragment Consortium which has a goal to provide additional 

compounds with greater three dimensionality. Hung et al. have exploited diversity-orientated 

synthesis as a method for generating 3D fragments.124 Natural products have been a rich 

source of drugs and tend to have a much higher sp3 content than synthetic compounds.125,126 

Over et al.127 describe an analysis of natural products to determine a set of natural product-

derived fragments rich in sp3 carbon atoms. The library was validated by screening against 

p38 kinase and identifying an atypical non-aromatic kinase fragment binding in an allosteric 

site. Vu et al.128 describe the creation of a natural product library of fragment sized 

compounds, identifying compounds binding to Plasmodium falciparum 2’-deoxyuridine 5’-

triphosphate nucleotidohydrolase (PfdUTPase). However, care must also be taken when 

designing natural product fragment libraries, and many of the other principles described in 

this Perspective should still be applied, of particular concern being the increase in molecular 

complexity and synthetic tractability associated with increasing the sp3 content. Furthermore, 

some natural products contain many groups that are considered PAINS21 and in isolation 

would be very problematic in terms of selectivity and mode of action, for example quinones 

and catechols.  



 

 

Many commercial vendors offer fragment libraries derived from their own synthetic 

compounds, marketed drugs and/or natural products129 and a number of CROs also claim 

unique fragment libraries as part of their offering, some of which are highlighted in Table 5. 

A brief summary of the design principles behind each set is also given where available. 

Greater detail can be found in the references and links in the table. Most of these libraries are 

designed within the bounds of the Rule-of-Three9 and many vendors now have tens of 

thousands of fragment like compounds available. Fluorine-containing libraries are available 

for 19F NMR and bromine-containing libraries for exploring halogen bonding effects130 and 

facilitating crystallographic screening. There are also a number of specialized libraries for 

specific target classes and covalent binding. A full assessment of these offerings is beyond the 

scope of this review, and indeed comparison is difficult without knowing the purpose or target 

of the campaign. However, the guidelines given throughout this review should prove useful in 

guiding the reader to select fragments from commercial sources. These include querying the 

available measured solubility and purity, applying substructure filters and selection algorithms 

appropriate to the target(s), and assessing the compounds for undesirable features and 

“optimizability” either by visual inspection or algorithmically. Chris Swain has analyzed the 

physicochemical properties of some of these libraries,131 though it is important to note that 

vendors do periodically change the compositions of their libraries. 

 

Despite the availability of fragment sets from commercial sources, there is a need for 

continuing development of novel fragments to tackle new targets. The impact of synthetic 

methodology on the properties of the resulting molecules has been recognized in the context 

of lead discovery,132 emphasising the role of the synthetic chemist in addressing these issues.  

In a recent essay,70 Murray and Rees have called on the chemistry community to increase 

research in the development of novel synthetic chemistry methodology, particularly with 



 

 

regard to fragment-sized compounds . In particular they highlight the need to more thoroughly 

explore and describe the synthetic routes to all potential growth vectors prior to screening 

because much time can be spent in the initial phases of optimization developing appropriate 

chemistry. The further development of approaches to C-H functionalization133 and use of 

high-pressure continuous flow methods to give novel heterocycles134 are some examples of 

recent chemistry developments that can be exploited in the synthesis of novel fragments.  

 

Vendor Website Library # cmpds Commercially 

available 

3D Fragment 

Library 

Consortium 

Ref. 86 Increased shape 

diversity 

through greater 

three 

dimensionality 

>500135 N 

ACB Blocks www.acbblocks.com 

19F NMR-

oriented, RO3 

compliant, 

predicted to be 

soluble. Purity 

> 96% 

1280 Y 

Analyticon www.ac-discovery.com FRGx: 

Fragments from 

Nature. RO3 

compliant, high 

solubility, 

purity > 95%. 

213 Y 

http://www.acbblocks.com/
http://www.ac-discovery.com/


 

 

AnCoreX www.ancorex.com MetaKel™ 

(metal 

chelating. MW 

< 300) 

TCI-Frag™ 

(Targeted 

covalent 

inhibitor 

fragment 

screening. 

Mildly reactive 

functionalities, 

RO3 compliant) 

>500 

 

 

 

>100 

N 

Asinex www.asinex.com  

Fragment 

library 

22,524 Y 

Beactica www.beactica.com SPRINT. 

Validated for 

SPR. 2000 

purchased 

fragments. 

1946 N 

Beryllium www.be4.com Fragments of 

Life™.138 

1,500 N 

BioBlocks www.bioblocks.com Proprietary 

fragment 

library based on 

exploration of 

3D shapes. 

~1000 N 

http://www.ancorex.com/
http://www.asinex.com/
http://www.beactica.com/
http://www.be4.com/
http://www.bioblocks.com/


 

 

Charles River www.criver.com Core fragment 

library, 500 

member kinase 

focussed set 

and 500 

member 19F 

labelled. 

1,500  

 

N 

ChemBridge www.chembridge.com ChemBridge 

Fragment 

Library, RO3 

compliant with 

predicted 

solubility. 

Minimum 

purity 90% by 

1H NMR. 

>7,000 Y 

ChemDiv www.chemdiv.com 3D designed 

fragment 

library 

4,283 Y 

Enamine www.enamine.com RO3 compliant 

Golden 

Fragment 

Library (diverse 

subset of full 

library), 

“simple” 

fragment 

18,108 

1,794 

 

 

 

 

126,597 

 

Y 

 

http://www.criver.com/
http://www.chembridge.com/
http://www.chemdiv.com/
http://www.enamine.com/


 

 

library: RO3 

compliant <=20 

heavy atoms 

from screening 

collection. 

Other smaller 

sets of 

fluorinated, 

brominated (for 

X-ray), 

covalent sp3 

rich and PPI 

fragments. 

 

 

 

 

 

 

InFarmatik www.infarmatik.com Consolidated 

library from 

different 

concepts, 

In3D,GPCR, 

Kinase 

1700 Y 

 

IOTA www.iotapharma.com Diverse, mainly 

RO3 compliant. 

1,500 Y 

Integrex www.integrexresearch.com Diversity in 

shape and 

chemical 

structure, RO3 

allowing one 

violation. 

1,500 Y 

http://www.infarmatik.com/
http://www.iotapharma.com/
http://www.integrexresearch.com/


 

 

Key Organics www.keyorganics.net Fragment 

library 

2nd Generation 

with assured 

aqueous 

solubility, RO3 

compliant. 

Fragments from 

Nature, RO3 

compliant, 

assured 

solubility and 

high Fsp3 

content. 

CNS fragment 

library. More 

stringent filters 

(e.g. mw<240) 

Fluorine 

Bromine 

26,000 

 

1166 

 

 

 

 

183 

 

 

 

 

 

 

700 

 

 

 

1,950 

1,656 

Y 

 

Life Chemicals www.lifechemicals.com General 

RO3 

compliant(and 

subsets of 

predicted 

soluble, 

Fluorinated, 

31,000 

14,000 

 

 

 

 

 

Y 

 

http://www.keyorganics.net/
http://www.lifechemicals.com/


 

 

Brominated and 

Fsp3 enriched, 

Covalent and 

PPI focused) 

Maybridge www.maybridge.com RO3 compliant 

Diversity 

Fragment 

library with 

assured 

solubility in 

DMSO and 

PBS buffer. 

1,000 fragment 

subset 

available. 

 

Fragment 

collection, 

filtered by 

purity, mw<350 

and 

substructures. 

2,500 

 

 

 

 

 

 

 

 

 

 

 

>30,000 

Y 

Otava www.otavachemicals.com General RO3 

compliant, 

predicted to be 

soluble. 

Assured 

12,486 

 

 

 

1,000 

Y 

http://www.maybridge.com/
http://www.otavachemicals.com/


 

 

solubility in 

DMSO and 

PBS 

Fluorine 

Metal chelator 

Halogen-

enriched with 

Bromine for X-

ray studies. 

 

 

 

1,217 

1,023 

618 

Prestwick 

Chemical 

www.prestwickchemical.com  Prestwick 

Fragment 

Library mainly 

derived from 

drug fragments, 

Ro3 compliant. 

910 Y 

Selcia www.selcia.com Selcia 

Fragment 

Library, RO3 

compliant, 

predicted and 

measured 

solubility with 

purity > 95%. 

1,400 Y 

TimTec www.timtec.net Fragment-based 

library 

structurally 

diverse with 

3,200 Y 

http://www.prestwickchemical.com/
http://www.selcia.com/
http://www.timtec.net/


 

 

predicted high 

solubility. 

Vitas-M www.vitasmlab.com RO3 compliant. 18,932 Y 

Zenobia www.zenobiafragments.com Fragment 

library from 

different design 

paradigms, 

cores from 

drugs, higher 

Fsp3 flexible 

cores etc. 

968 Y 

ZoBio http://www.zobio.com/ RO3 compliant 

diverse 

commercially 

available and a 

smaller 

proprietary 

library. 

2,300 N 

 

Table 5. Selected list of vendors and CRO fragment libraries, highlighting the range of 

libraries on offer in terms of design principles and numbers. 

 

Management of fragment libraries 

 

Management of fragment libraries is prosaic yet critical. The first step is to make sure that 

every fragment that enters the library passes acceptable purity criteria, typically 90-95%. At a 

minimum this should be established by HPLC-MS, but preferably this will be confirmed by 

http://www.vitasmlab.com/
http://www.zenobiafragments.com/
http://www.zobio.com/


 

 

NMR. If NMR will be used as part of the screening process, it will be important to obtain 

spectra of the compounds anyway, so purity can be established with minimal extra effort. 

Recognizing the importance of this, some commercial vendors have started including NMR 

spectra for their fragment libraries. However, this should not substitute for in-house 

confirmation: an analysis by Darren Begley, then at Emerald Biosciences, found that 16% of 

samples across a set of >10 vendors failed QC, with failure rates as high as 33% in some 

cases.136  

 

In addition to the working library, it is essential to have access to dry stocks of fragments for 

confirmation experiments. When Pfizer built its fragment library, the requirement was that at 

least 200 mg of material was available for in-house compounds.28 When purchasing 

compounds from a commercial vendor, it is prudent to check availability. It is all too common 

(and frustrating) to find that a fragment is no longer available months or years later when it 

shows up as a screening hit.  

 

DMSO is almost always the solvent of choice for fragment screening libraries. If NMR will 

be used at some point, it makes sense to dissolve the fragments in deuterated DMSO, 

particularly since the added cost is minimal. Compounds are typically dissolved at a 

concentration of at least 50 mM to minimize the amount of solvent introduced into the assay: 

a final concentration of 1 mM fragment would give 2% DMSO. Even higher concentration 

stocks are advantageous in reducing the amount of organic solvent in the final assay. For 

example, researchers at Monash University prepared their fragment libraries at 200 mM.137 

However, this comes with the risk that fewer fragments will be soluble.  

 



 

 

Besides DMSO, the only other solvent that has been used to any extent is methanol; due to its 

volatility it can be used to add larger amounts of fragments to a crystallization plate without 

changing the final buffer composition.138 However, this approach does not appear to have 

been used widely. The low surface tension of methanol makes it harder to precisely aliquot, 

and fragments may not easily redissolve in buffer once they have dried onto a plate. 

 

Compound stability is also not to be taken for granted. Most fragment libraries are prepared in 

DMSO, which is slightly oxidizing, and some compounds can rapidly degrade in it.139 Even 

water is not necessarily benign: seemingly stable moieties such as benzoxazoles can 

hydrolyze, even when stored as solids.140 In another case a library compound cyclized in 

DMSO to form an active species, but this in turn proved to be unstable in water, complicating 

assay interpretation.13 Thus, best practice is to periodically (often annually) reevaluate 

fragment libraries to ensure their integrity.141  

 

There is some debate as to how best to store fragment stock solutions. A study of 7200 

compounds stored in DMSO at room temperature at Procter and Gamble found that while 

only 8% had degraded after 3 months, this had increased to 17% after 6 months and a 

whopping 48% after 1 year.142 Storing DMSO solutions frozen would seem to be a solution, 

but the resulting freeze-thaw cycles are themselves problematic, particularly as they increase 

the likelihood of introducing atmospheric water into the DMSO, which is highly hygroscopic. 

Compound solubility in DMSO has been reported to decrease dramatically in the presence of 

even small amounts of water.143 Consistent with this, a study of 232 compounds subjected to 

repeated freeze-thaw cycles showed precipitation and decreased concentrations compared to 

compounds that had been stored frozen or even at room temperature.142 It is important to note 



 

 

that the molecules used in these studies were not fragments, and it is possible that larger 

molecules have higher odds of instability and precipitation. 

 

Although pure DMSO freezes at around +19 ˚C, compound stocks at 100 mM or more often 

remain liquid even at low temperatures. Thus, a common strategy is to store fragment stocks 

at low temperatures to slow decomposition but minimize freeze-thaw cycles. In a poll taken at 

Practical Fragments in early 2014, more than half of respondents reported storing fragment 

libraries at +4 ˚C or – 20 ˚C, while nearly a third kept their libraries at room temperature 

(Figure 7).144 Keeping libraries under inert gas in low humidity is also good practice. 

 

Figure 7. Results of a poll taken on Practical Fragments in January and February 2014 asking 

how fragment libraries are stored; there were 79 responses.144  

 

 

 

Perspectives, conclusion  

 

Fragment-based drug discovery is well-established in industry and has resulted in more than 

30 drugs entering clinical trials,145 with one – vemurafenib – already approved. FBDD also 



 

 

has key attractions for academia. Notably, it is able to tackle difficult or novel targets for 

which no chemical matter may be found in existing HTS collections. Moreover, establishing 

and screening a fragment library, which can be as small as a few hundred compounds, is far 

less expensive and challenging than working with a standard HTS collection of 500,000+ 

compounds. 

 

However, precisely because fragment libraries are small, the outcome of FBDD programs is 

very much dependent on the initial fragment hits, so it is essential that these are carefully 

selected. Design of fragment libraries requires the consideration of multiple factors that often 

contradict each other, complicating the process. 

 

At a minimum, fragment libraries should be purged of compounds known to be generically 

reactive or that interfere with common assays, including PAINS such as quinones and redox 

cyclers such as toxoflavin. Certain types of compounds that repeatedly show up as screening 

hits but rarely yield structural information, such as PrATs, should probably also be avoided. 

On the other hand, “non-selectively specific fragments” that bind to multiple proteins through 

well-characterized interactions, such as 7-azaindole and 4-bromopyrazole, may be useful 

additions to a fragment library. 

 

Simple filters based exclusively on physicochemical properties have a role – there is no place 

for a massively lipophilic 500 Da molecule in a fragment library – but as with all of drug 

discovery these should be seen as guidelines rather than hard and fast rules. On the other 

hand, high solubility is critical, and this should be measured experimentally. 

 



 

 

Other factors are harder to prescribe. Molecular complexity impacts the affinity and 

specificity against targets, but is more difficult to measure. In general smaller, simpler 

fragments are likely to be more useful, while fragments with multiple stereocenters or more 

three-dimensional shapes may provide lower hit rates.37 

 

Synthetic considerations are important too: it can be frustrating to discover a fragment binding 

perfectly in a target only to find that growing in the desired direction requires developing 

unprecedented chemistry. A good practice is to ensure that multiple analogs of any fragment 

included in the library are available, either commercially or in-house. Given the limited 

diversity of available protein binding sites, together with the small relative size of fragments, 

the size and diversity of the library – assuming a reasonable minimum – are probably less 

important. 

 

The overall quality of the fragment library depends on physical factors too, of which purity, 

stability and storage conditions are clearly the most important. Periodic assessment of the 

fragment library for degradation, and confirmation of any hits with fresh sample, are essential 

practices. 

 

The success or failure of discovery programs is very much influenced by the screening hits. 

Since the quality of hits is determined by the screening technology and the library screened, 

updated design principles of fragment libraries will hopefully contribute to the increased 

success rate of FBDD programs. Table 6 contains guidelines we would recommend when 

constructing a fragment library or when considering the addition of new fragments to an 

existing library. As discussed throughout, these guidelines should be considered in the context 

of both the biological target and the fragment screening technique.  



 

 

Building on more than a decade of screening fragment libraries, we hope that this paper will 

promote wider adoption of fragment-based approaches by helping to improve the quality of 

fragment libraries and associated screening technologies. 

 

 

Property Guideline  

Library size 500 – 3000 fragments (smaller libraries are more 

appropriate for lower throughput screening methods 

(e.g., x-ray) and larger libraries are more appropriate 

for higher throughput methods (e.g, SPR)) 

Physico-

chemical 

properties 

 

 

 

                                                                                                  

 

Molecular weight: ~140-230;  

Non-hydrogen atoms: 9-16; 

(Fragments at the lower end of the size range are more 

appropriate for lower throughput, higher sensitivity 

screening methods) 

Lipophilicity (cLogP):  ~0.0 to 2.0;  

Number of freely rotatable bonds: 0-3; 

Number of chiral centres: 0-1, sometimes 2. Always 

use racemates. 

Properties commensurate with biophysical screening at 

high concentrations, e.g., aqueous solubility (preferably 

≥5mM in 5% DMSO, or other screening co-solvents); 

stability (>24h in solution); avoid 

compounds/functional groups known to be associated 



 

 

with high reactivity, aggregation in solution, or false 

positives.  

Molecular 

recognition  

Diverse, usually polar groups for binding to a protein (a 

single pharmacophore). An aspiration is to express any 

given binding pharmacophore in a variety of diverse 

scaffolds (chemotypes). 

Shape Variety of 2- and 3-dimensional shapes for each 

scaffold and pharmacophore; 

Availability of 

analogs 

Fragments should contain multiple synthetically 

accessible vectors for fragment growth in 3 dimensions 

to access new binding interactions. Fragments should 

be synthesizable in <4 steps from commercial available 

starting materials. Under some circumstances it may be 

desirable to choose fragments that are commercially 

available and/or have many commercially available 

analogs 

Diversity Diversity metrics should be used to prevent the 

inclusion of close analogs in the library. Care should be 

taken to ensure the diversity metrics do not favor the 

selection of larger fragments over simpler examples 

and that appropriate descriptors and similarity cutoffs 

are used. 

 



 

 

 

 

 

 

 

Table 6. Recommended guidelines for construction of a fragment library. 
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