874 research outputs found

    Gratings for Increasing Solid-State Laser Gain and Efficiency

    Get PDF
    We introduce new concepts for increasing the efficiency of solid state lasers by using gratings deposited on laser slabs or disks. The gratings improve efficiency in two ways: (1) by coupling out of the slab deleterious amplified spontaneous emission (ASE) and (2) by increasing the absorption efficiency of pump light. The gratings also serve as antireflective coatings for the extracting laser beam. To evaluate the potential for such coatings to improve laser performance, we calculated optical properties of a 2500 groove/mm, tantala-silica grating on a 1cm x 4cm x 8cm titanium-doped sapphire slab and performed ray-trace calculations for ASE and pump light. Our calculations show substantial improvements in efficiency due to grating ASE-coupling properties. For example, the gratings reduce pump energy required to produce a 0.6/cm gain coefficient by 9%, 20% and 35% for pump pulse durations of 0.5 {micro}s, 1{micro}s and 3{micro}s, respectively. Gratings also increase 532-nm pump-light absorption efficiency, particularly when the product slab overall absorption is small. For example, when the single-pass absorption is 1 neper, absorption efficiency increases from 66%, without gratings, to 86%, when gratings are used

    Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    Get PDF
    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences

    Kelp Forest Ecosystems: Biodiversity, Stability, Resilience and Future

    Get PDF
    Kelp forests are phyletically diverse, structurally complex and highly productive components of cold-water rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40-60degrees latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2-3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The largescale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems

    \u3ci\u3eDe novo\u3c/i\u3e Whole Genome Assembly of the Swede Midge (\u3ci\u3eContarinia nasturtii\u3c/i\u3e), a Specialist of Brassicaceae, Using Linked-Read Sequencing

    Get PDF
    The swede midge, Contarinia nasturtii, is a cecidomyiid fly that feeds specifically on plants within the Brassicaceae. Plants in this family employ a glucosinolate-myrosinase defense system, which can be highly toxic to non-specialist feeders. Feeding by C. nasturtii larvae induces gall formation, which can cause substantial yield losses thus making it a significant agricultural pest. A lack of genomic resources, in particular a reference genome, has limited deciphering the mechanisms underlying glucosinolate tolerance in C. nasturtii, which is of particular importance for managing this species. Here, we present an annotated, scaffolded reference genome of C. nasturtii using linked-read sequencing from a single individual and explore systems involved in glucosinolate detoxification. The C. nasturtii genome is similar in size and annotation completeness to that of the Hessian fly, Mayetiola destructor, but has greater contiguity. Several genes encoding enzymes involved in glucosinolate detoxification in other insect pests, including myrosinases, sulfatases, and glutathione S-transferases, were found, suggesting that C. nasturtii has developed similar strategies for feeding on Brassicaceae. The C. nasturtii genome will, therefore, be integral to continued research on plant-insect interactions in this system and contribute to effective pest management strategies

    Reply to Ellis et al.: human niche construction and evolutionary theory

    Get PDF
    We are pleased Ellis et al. found value in our recent synthesis of the deep history of human impacts on global ecosystems and agree that our paper should influence the current debate on if and how an Anthropocene epoch is defined. We also agree that the ecological consequences of human niche construction have profound and growing effects on the evolutionary trajectories of humans and other species living within human-altered ecosystems. Niche construction theory (NCT) provides an explicit framework for linking evolutionary and ecological processes into a coherent theory of biological evolution. Of special appeal to us as archaeologists is that NCT bridges biological and cultural evolution by including human culture and social learning within the mechanisms of evolutionary change, allowing scientists to address issues at the interface of human and natural systems. Some of us have contributed significantly to human NCT, addressing some of the very issues raised by Ellis et al. Finally, we agree that human transformations of ecosystems are inherently social processes—clearly humans are intensely social organisms—and that such processes result from long-term melding of biological and cultural evolution

    Reply to Westaway and Lyman: emus, dingoes, and archaeology’s role in conservation biology

    Get PDF
    In a curious comment on our PNAS Perspective, Westaway and Lyman offer two Australian zooarchaeological case studies—one involving eggshells and the other dingoes—that they argue undercut one of our main points: that archaeological data and deep time perspectives have much to offer conservation biology. Neither example provides a specific substantive critique of our perspective: there are no dingoes in our article, no eggshells, and we mention the long and rich record of human management and alteration of Australian environments only briefly. Nor do we suggest that all archaeological assemblages can effectively inform current conservation biology efforts. Such datasets obviously vary in their quality and potential applicability to modern situations. When considered more closely, both of Westaway and Lyman’s case studies underscore rather than undercut the importance of archaeological and paleoecological data in conservation biology initiatives

    Spatial control of Draper receptor signaling initiates apoptotic cell engulfment.

    Get PDF
    The engulfment of apoptotic cells is essential for tissue homeostasis and recovering from damage. Engulfment is mediated by receptors that recognize ligands exposed on apoptotic cells such as phosphatidylserine (PS). In this study, we convert Drosophila melanogaster S2 cells into proficient phagocytes by transfecting the Draper engulfment receptor and replacing apoptotic cells with PS-coated beads. Similar to the T cell receptor (TCR), PS-ligated Draper forms dynamic microclusters that recruit cytosolic effector proteins and exclude a bulky transmembrane phosphatase, consistent with a kinetic segregation-based triggering mechanism. However, in contrast with the TCR, localized signaling at Draper microclusters results in time-dependent depletion of actin filaments, which facilitates engulfment. The Draper-PS extracellular module can be replaced with FRB and FKBP, respectively, resulting in a rapamycin-inducible engulfment system that can be programmed toward defined targets. Collectively, our results reveal mechanistic similarities and differences between the receptors involved in apoptotic corpse clearance and mammalian immunity and demonstrate that engulfment can be reprogrammed toward nonnative targets

    Oregon 2100: projected climatic and ecological changes

    Get PDF
    Greenhouse climatic warming is underway and exacerbated by human activities. Future outcomes of these processes can be projected using computer models checked against climatic changes during comparable past atmospheric compositions. This study gives concise quantitative predictions for future climate, landscapes, soils, vegetation, and marine and terrestrial animals of Oregon. Fossil fuel burning and other human activities by the year 2100 are projected to yield atmospheric CO2 levels of about 600-850 ppm (SRES A1B and B1), well above current levels of 400 ppm and preindustrial levels of 280 ppm. Such a greenhouse climate was last recorded in Oregon during the middle Miocene, some 16 million years ago. Oregon’s future may be guided by fossil records of the middle Miocene, as well as ongoing studies on the environmental tolerances of Oregon plants and animals, and experiments on the biological effects of global warming. As carbon dioxide levels increase, Oregon’s climate will move toward warm temperate, humid in the west and semiarid to subhumid to the east, with increased summer and winter drought in the west. Western Oregon lowlands will become less suitable for temperate fruits and nuts and Pinot Noir grapes, but its hills will remain a productive softwood forest resource. Improved pasture and winter wheat crops will become more widespread in eastern Oregon. Tsunamis and stronger storms will exacerbate marine erosion along the Oregon Coast, with significant damage to coastal properties and cultural resources

    Powerful Relationships in Leadership: A Collection of Modern Leadership Insights

    Get PDF
    Powerful Relationships in Leadership caters to front runners of the leadership world who are looking for fresh perspectives into how to properly organize and create trailblazing organizations. This book is a collection of articles on aspects of leading. It separates itself from other management texts by offering perceptions of entry level personnel. It is our hope that you will begin to appreciate how entry level personnel view management and their role in guiding administrators.https://openriver.winona.edu/leadershipeducationbooks/1001/thumbnail.jp

    Veteran teachers' identity: what does the research literature tell us?

    Get PDF
    This paper provides an overview of research on veteran teachers and teacher identity. It analyses issues at the personal, situated and professional levels that have been shown to impact on veteran teachers' identities. The search included empirical studies published in peer-reviewed journals between 2005 and 2016. In total, 19 papers were analysed. Findings revealed that many studies focused on veteran teachers' resilience. Issues concerning veteran teachers' identities are key to understanding why they remain in the profession and are able to sustain their motivation and commitment over time. Many veteran teachers portrayed in the literature built on their confidence regarding their professional competence and relied on internal and external issues to maintain their motivation and commitment to teaching. The role of emotions in the transformation of veteran teachers' identities and the permeable boundaries of the personal, situated and professional scenarios influencing veteran teachers' identities are highlighted in the paper.Financial Support by CIEC (Research Centre on Child Studies, IE, UMinho; FCT R&D unit 317, Portugal) by the Strategic Project UID/CED/00317/2013, with financial support of National Funds through the FCT (Foundation for Science and Technology) and co-financed by European Regional Development Funds (FEDER) through the COMPETE 2020 - Competitiveness and Internationalization Operational Program (POCI) with the reference POCI-01-0145-FEDER-00756
    • …
    corecore