463 research outputs found

    Autonomous quantum clocks: does thermodynamics limit our ability to measure time?

    Get PDF
    Time remains one of the least well understood concepts in physics, most notably in quantum mechanics. A central goal is to find the fundamental limits of measuring time. One of the main obstacles is the fact that time is not an observable and thus has to be measured indirectly. Here we explore these questions by introducing a model of time measurements that is complete and autonomous. Specifically, our autonomous quantum clock consists of a system out of thermal equilibrium --- a prerequisite for any system to function as a clock --- powered by minimal resources, namely two thermal baths at different temperatures. Through a detailed analysis of this specific clock model, we find that the laws of thermodynamics dictate a trade-off between the amount of dissipated heat and the clock's performance in terms of its accuracy and resolution. Our results furthermore imply that a fundamental entropy production is associated with the operation of any autonomous quantum clock, assuming that quantum machines cannot achieve perfect efficiency at finite power. More generally, autonomous clocks provide a natural framework for the exploration of fundamental questions about time in quantum theory and beyond

    Disturbances in primary visual processing as a function of healthy aging

    Get PDF
    For decades, visual entrainment paradigms have been widely used to investigate basic visual processing in healthy individuals and those with neurological disorders. While healthy aging is known to be associated with alterations in visual processing, whether this extends to visual entrainment responses and the precise cortical regions involved is not fully understood. Such knowledge is imperative given the recent surge in interest surrounding the use of flicker stimulation and entrainment in the context of identifying and treating Alzheimer’s disease (AD). In the current study, we examined visual entrainment in eighty healthy aging adults using magnetoencephalography (MEG) and a 15 Hz entrainment paradigm, while controlling for age-related cortical thinning. MEG data were imaged using a time-frequency resolved beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying the processing of the visual flicker stimuli. We found that, as age increased, the mean amplitude of entrainment responses decreased and the latency of these responses increased. However, there was no effect of age on the trial-to-trial consistency in phase (i.e., inter-trial phase locking) nor amplitude (i.e., coefficient of variation) of these visual responses. Importantly, we discovered that the relationship between age and response amplitude was fully mediated by the latency of visual processing. These results indicate that aging is associated with robust changes in the latency and amplitude of visual entrainment responses within regions surrounding the calcarine fissure, which should be considered in studies examining neurological disorders such as AD and other conditions associated with increased age

    Measurements in two bases are sufficient for certifying high-dimensional entanglement

    Full text link
    High-dimensional encoding of quantum information provides a promising method of transcending current limitations in quantum communication. One of the central challenges in the pursuit of such an approach is the certification of high-dimensional entanglement. In particular, it is desirable to do so without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental setup, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state.Comment: 11+14 pages, 2+7 figure

    Efficient modulation of of γ-aminobutyric acid type A (GABAA) receptors by piperine derivatives

    Get PDF
    [Image: see text] Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABA(A)R). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABA(A)R by means of a two-microelectrode voltage-clamp technique. GABA(A)R were expressed in Xenopus laevis oocytes. Structure–activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABA(A)R. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABA(A) (maximal GABA-induced chloride current modulation (I(GABA-max) = 1673% ± 146%, EC(50) = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC(50) = 13.8 ± 1.8 μM, I(GABA-max) = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABA(A)R modulators

    Repeatability and Longitudinal Assessment of Foveal Cone Structure in Cngb3-associated Achromatopsia

    Get PDF
    PURPOSE: Congenital achromatopsia is an autosomal recessive disease causing substantial reduction or complete absence of cone function. Although believed to be a relatively stationary disorder, questions remain regarding the stability of cone structure over time. In this study, the authors sought to assess the repeatability of and examine longitudinal changes in measurements of central cone structure in patients with achromatopsia. METHODS: Forty-one subjects with CNGB3-associated achromatopsia were imaged over a period of between 6 and 26 months using optical coherence tomography and adaptive optics scanning light ophthalmoscopy. Outer nuclear layer (ONL) thickness, ellipsoid zone (EZ) disruption, and peak foveal cone density were assessed. RESULTS: ONL thickness increased slightly compared with baseline (0.184 μm/month, P = 0.02). The EZ grade remained unchanged for 34/41 subjects. Peak foveal cone density did not significantly change over time (mean change 1% per 6 months, P = 0.126). CONCLUSION: Foveal cone structure showed little or no change in this group of subjects with CNGB3-associated achromatopsia. Over the time scales investigated (6–26 months), achromatopsia seems to be a structurally stable condition, although longer-term follow-up is needed. These data will be useful in assessing foveal cone structure after therapeutic intervention

    Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia

    Get PDF
    PURPOSE: Congenital achromatopsia (ACHM) is an autosomal recessive disorder in which cone function is absent or severely reduced. Gene therapy in animal models of ACHM have shown restoration of cone function, though translation of these results to humans relies, in part, on the presence of viable cone photoreceptors at the time of treatment. Here, we characterized residual cone structure in subjects with CNGB3-associated ACHM. METHODS: High-resolution imaging (optical coherence tomography [OCT] and adaptive optics scanning light ophthalmoscopy [AOSLO]) was performed in 51 subjects with CNGB3-associated ACHM. Peak cone density and inter-cone spacing at the fovea was measured using split-detection AOSLO. Foveal outer nuclear layer thickness was measured in OCT images, and the integrity of the photoreceptor layer was assessed using a previously published OCT grading scheme RESULTS: Analyzable images of the foveal cones were obtained in 26 of 51 subjects, with nystagmus representing the major obstacle to obtaining high-quality images. Peak foveal cone density ranged from 7,273 to 53,554 cones/mm2, significantly lower than normal (range, 84,733–234,391 cones/mm2), with the remnant cones being either contiguously or sparsely arranged. Peak cone density was correlated with OCT integrity grade; however, there was overlap of the density ranges between OCT grades. CONCLUSIONS: The degree of residual foveal cone structure varies greatly among subjects with CNGB3-associated ACHM. Such measurements may be useful in estimating the therapeutic potential of a given retina, providing affected individuals and physicians with valuable information to more accurately assess the risk-benefit ratio as they consider enrolling in experimental gene therapy trials. (www.clinicaltrials.gov, NCT01846052.

    Measuring the thermodynamic cost of timekeeping

    Get PDF
    All clocks, in some form or another, use the evolution of nature toward higher entropy states to quantify the passage of time. Because of the statistical nature of the second law and corresponding entropy flows, fluctuations fundamentally limit the performance of any clock. This suggests a deep relation between the increase in entropy and the quality of clock ticks. Indeed, minimal models for autonomous clocks in the quantum realm revealed that a linear relation can be derived, where for a limited regime every bit of entropy linearly increases the accuracy of quantum clocks. But can such a linear relation persist as we move toward a more classical system? We answer this in the affirmative by presenting the first experimental investigation of this thermodynamic relation in a nanoscale clock. We stochastically drive a nanometer-thick membrane and read out its displacement with a radio-frequency cavity, allowing us to identify the ticks of a clock. We show theoretically that the maximum possible accuracy for this classical clock is proportional to the entropy created per tick, similar to the known limit for a weakly coupled quantum clock but with a different proportionality constant. We measure both the accuracy and the entropy. Once nonthermal noise is accounted for, we find that there is a linear relation between accuracy and entropy and that the clock operates within an order of magnitude of the theoretical bound

    An Electrochemical Study of Frustrated Lewis Pairs: A Metal-free Route to Hydrogen Oxidation

    Get PDF
    [Image: see text] Frustrated Lewis pairs have found many applications in the heterolytic activation of H(2) and subsequent hydrogenation of small molecules through delivery of the resulting proton and hydride equivalents. Herein, we describe how H(2) can be preactivated using classical frustrated Lewis pair chemistry and combined with in situ nonaqueous electrochemical oxidation of the resulting borohydride. Our approach allows hydrogen to be cleanly converted into two protons and two electrons in situ, and reduces the potential (the required energetic driving force) for nonaqueous H(2) oxidation by 610 mV (117.7 kJ mol(–1)). This significant energy reduction opens routes to the development of nonaqueous hydrogen energy technology

    Differential calculus with imprecise input and its logical framework

    Get PDF
    We develop a domain-theoretic Differential Calculus for locally Lipschitz functions on finite dimensional real spaces with imprecise input/output. The inputs to these functions are hyper-rectangles and the outputs are compact real intervals. This extends the domain of application of Interval Analysis and exact arithmetic to the derivative. A new notion of a tie for these functions is introduced, which in one dimension represents a modification of the notion previously used in the one-dimensional framework. A Scott continuous sub-differential for these functions is then constructed, which satisfies a weaker form of calculus compared to that of the Clarke sub-gradient. We then adopt a Program Logic viewpoint using the equivalence of the category of stably locally compact spaces with that of semi-strong proximity lattices. We show that given a localic approximable mapping representing a locally Lipschitz map with imprecise input/output, a localic approximable mapping for its sub-differential can be constructed, which provides a logical formulation of the sub-differential operator
    corecore