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Abstract. We develop a domain-theoretic Differential Calculus for
locally Lipschitz functions on finite dimensional real spaces with impre-
cise input/output. The inputs to these functions are hyper-rectangles
and the outputs are compact real intervals. This extends the domain
of application of Interval Analysis and exact arithmetic to the deriva-
tive. A new notion of a tie for these functions is introduced, which in
one dimension represents a modification of the notion previously used
in the one-dimensional framework. A Scott continuous sub-differential
for these functions is then constructed, which satisfies a weaker form of
calculus compared to that of the Clarke sub-gradient. We then adopt a
Program Logic viewpoint using the equivalence of the category of stably
locally compact spaces with that of semi-strong proximity lattices. We
show that given a localic approximable mapping representing a locally
Lipschitz map with imprecise input/output, a localic approximable map-
ping for its sub-differential can be constructed, which provides a logical
formulation of the sub-differential operator.

Keywords: Imprecise input/output · Interval analysis
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1 Introduction

A well-known hurdle in numerical computation is caused by accumulation of
round-off errors in floating point arithmetic, which can create havoc and lead
to catastrophic errors in compound calculations. In safety and critical systems,
where reliability of numerical computation is of utmost importance, one way to
avoid the pitfalls of floating point arithmetic is to use interval analysis or exact
arithmetic. In both interval analysis and exact arithmetic as well as in com-
putable analysis, a real number is represented by a nested shrinking sequence
of compact intervals whose intersections is the real number. Similarly, a real n-
vector can be represented by a nested sequence of hyper-rectangles in R

n. This
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leads to a framework in numerical computation and a framework for compu-
tational geometry where the inputs of algorithms or programmes are imprecise
real numbers or real n-vectors; see for example [3,5,6,9,10,14,15,17,21–23,27].

All frameworks for interval analysis and exact real computation are based
on functions whose input and output are real intervals. When we compose two
such functions, the output of the first function serves as the input to the second
function. An implementation of these frameworks in a functional programming
language follows this same pattern; see for example the lazy Haskell implemen-
tation of IC-Reals for Exact Real Computation [1], which uses linear fractional
transformations as developed in [14,22].

An important feature of working with a calculus consisting of functions with
interval or imprecise input/output is that even when we deal with elementary
functions such as polynomials we cannot restrict ourselves to their canonical
(maximal) extensions to intervals [21]. These canonical extensions take a com-
pact interval to its forward image under the function. In fact, these extensions
are not closed under, for example, multiplication. Thus, the real-valued map of a
real variable x �→ x2 when implemented with interval input by x �→ x × x, using
multiplication of two copies of the input interval, is not the canonical extension
of the quadratic map of real numbers: it evaluates for example [−1, 1]2 to [−1, 1]
rather than [0, 1], which is what the canonical extension of the quadratic map
evaluates to. In general, we need to work with any Scott continuous map of type
IR → IR or, in higher dimension, of type IRn → IR, where IRn denotes the
domain of hyper-rectangles of R

n.
In the past 60 years, interval analysis has grown as a distinct interdisciplinary

subject to impact on nearly all areas of mathematical and numerical analy-
sis including computer arithmetic, linear algebra, integration, solution of initial
value problems and partial differential equations to correct solutions in mathe-
matical optimisation and robotics; see [20]. It is natural to ask if the domain of
application of interval analysis and exact computation can be extended to the
derivative of functions, i.e., whether one can take a kind of derivative of a map
which takes a compact interval or a compact hyper-rectangle as input.

In [11], the notion of a domain-theoretic sub-differentiation of maps which
have non-empty and compact intervals as inputs and outputs was introduced.
The restriction of these maps to real numbers turns out to be locally Lipschitz
maps of type R → R and the sub-differential restricted to real numbers has been
shown to be the same as the Clarke sub-gradient [8]. A major problem, however,
is that the framework in [11], which only deals with one-dimensional maps of
type IR → IR is not accompanied with a Stone duality framework and thus,
even in dimension one, cannot be used in order to handle program logic and
predicate transformers.

In [7], a typed lambda calculus in the framework of an extension of Real
PCF [6,17,22] was introduced in which in particular continuously differentiable
and more generally Lipschitz functions can be defined. Given an expression rep-
resenting a real-valued function of a real variable in this language, one is able
to evaluate the expression on an argument, representing an interval, but also
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evaluate the generalised derivative, i.e., the L-derivative, equivalently the Clarke
gradient, of the expression on an interval. The operational semantics of the lan-
guage, which is equipped with min and a weighed average, enjoys adequacy and
a definability result proving that any computable Lipschitz map is definable in
it. The denotational semantics is based on domain theory which in principle
allows a program logic formulation of the computation, although this challenge
has not been taken up yet.

In [13], a point free framework for sub-differentiation of real-valued locally
Lipschitz functions on finite dimensional Euclidean spaces has been developed
which provides a Stone duality for the Clarke gradient and thus enables a pro-
gram logic view of differentiation. However, the induced logical framework cannot
be employed for the class of functions with imprecise input/output used in exact
computation since, as already pointed out, this class necessarily contains general
extensions of real-valued locally Lipschitz maps of finite dimensional Euclidean
spaces.

In this paper, we formulate a new notion of a tie of functions with impre-
cise input/output, which, in one dimension, represents a modification of the
corresponding notion in [12]. This allows us to develop a Scott continuous sub-
differential for functions with hyper-rectangles in R

n as inputs and compact
intervals in R as output, which are used in exact computation. We show that
a weaker calculus compared to that for the Clarke sub-gradient is satisfied in
this interval framework. In addition we construct a logical framework for sub-
differentiation of locally Lipschitz maps of type IRn → IR. The basic Stone
duality results developed in [13] are then extended to sub-differentiation of such
interval maps.

1.1 Background

We assume the reader is familiar with basic elements of topology and domain
theory. Following the definition in [18], by a domain we mean a continuous
dcpo (directed complete partial order). All the domains we use in this paper are
bounded complete as well. By C(Rn), we denote the domain of non-empty convex
and compact subsets of R

n ordered with reverse inclusion and augmented with
⊥ = R

n as the bottom element. If C1, C2 ∈ C(Rn) then the way-below relation
is given by C1 � C2 iff C◦

1 ⊃ C2, where S◦ is the interior of the set S. By IRn,
we denote the sub-domain of non-empty compact hyper-rectangles with faces
parallel to coordinate hyper-planes of R

n. The Euclidean norm of x ∈ R
n is

denoted by ‖x‖.
The lattice of open subsets of a topological space X is denoted by Ω(X).

The Scott topology of a domain D is, however, written as σD. The closure of
S ⊂ X is denoted by S. The upper topology, equivalently the Scott-topology, of
C(Rn) has a basis of the form

�O = {C ∈ C(Rn) : C ⊂ O},

where O belongs to a basis of open and convex subsets of R
n.



462 A. Edalat and M. Maleki

Given an open set a ⊂ X of a topological space and an element b ∈ D of
a domain D, the single-step function bχa : X → D is defined by bχa(x) = b
if x ∈ a and ⊥ otherwise. A non-empty compact real interval x is written as
x = [x−, x+]. For a map f : X → Y of topological spaces, f [S] denotes the
image of the set S ⊂ X.

The three operations of addition of two vectors, scalar multiplication of a
vector and a real number, and the inner product of two vectors can be extended
to C(Rn) to obtain the following three Scott continuous maps:

(i) − + − : C(Rn) × C(Rn) → C(Rn) with A + B = {a + b : a ∈ A, b ∈ B},
(ii) − × − : R × C(Rn) → C(Rn) with rA = {rx : x ∈ A}, and,
(iii) − · − : C(Rn) × C(Rn) → IR with A · B = {a · b : a ∈ A, b ∈ B}.

These three operations have well-defined restrictions to IRn. In addition, in this
paper, we will consider their higher order extension to sets of sets. For example,
if a1, a2 ∈ Ω(R) are open subsets, then �a1,�a2 ∈ σC(Rn) and we have:

(�a1) · (�a2) := {x1 · x2 : x1 ∈ �a1, x2 ∈ �a2}

Moreover:

Proposition 1. (i) The modal operator � : Ω(Rn) → σC(Rn) preserves meets,
i.e., �O1 ∧ �O2 = �(O1 ∧ O2) for all O1, O2 ∈ Ω(Rn).

(ii) The way-below relation satisfies O1 � O2 if and only if �O1 � �O2 for
all O1, O2 ∈ Ω(Rn).

(iii) If O1, O2 ⊂ R
n are open hyper-rectangles, then �(O1 + O2) = �O1 + �O2.

(iv) If O ⊂ R
n is a convex open set and a ⊂ R

n is a hyper-rectangle, then
�(O · a) = (�O) · (�a).

Next, we present the notion of Clarke’s sub-gradient [4]. Recall that a map
f : U ⊂ R

n → R, where U is an open set, is locally Lipschitz if all points
in U have an open neighbourhood O ⊂ U with a constant k ≥ 0 such that
|f(x) − f(y)| ≤ k‖x − y‖ for all x, y ∈ O. The generalized directional derivative
of a locally Lipschitz f at x in the direction of v is defined as follow:

f◦(x; v) = lim sup
y→x t→0+

f(y + tv) − f(y)
t

The Clarke subgradient of f at x, denoted by ∂f(x) is a convex and compact
subset of R

n and is defined by:

∂f(x) = {w ∈ R
n : f◦(x; v) ≥ w · v for all v ∈ R

n} (1)

The sub-gradient function ∂f : U ⊂ R
n → C(Rn) is upper continuous, equiva-

lently Scott continuous. Moreover, the Clarke sub-gradient satisfies a weak cal-
culus. For locally Lipschitz maps f, g : U ⊆ R

n → R,

(i) Sum: ∂f(x) + ∂g(x) ⊇ ∂(f + g)(x).
(ii) Product: (∂f(x))g(x) + f(x)(∂g(x)) ⊇ ∂(f · g)(x)
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(iii) Chain rule: For f, g : R → R, ∂f(g(x)) · ∂g(x) ⊇ ∂(f ◦ g)(x).

The notion of the L-derivative, equivalent to the Clarke sub-gradient, for
real-valued functions on finite dimensional Euclidean spaces has the following
ingredients [8]. A function f : U ⊂ R

n → R has a non-empty generalized
Lipschitz constant b ∈ C(Rn) in a non-empty convex open set a ⊂ R

n if for
all x, y ∈ a we have f(x) − f(y) ∈ b · (x − y). The collection of all functions
that have generalized Lipschitz constant b in a is denoted by δ(a, b), called the
tie of a with b. The collection of all single-step functions bχa with a ⊂ U and
f ∈ δ(a, b) is bounded in (U → C(Rn)) and thus the L-derivative of f defined
as

Lf = sup{bχa : f ∈ δ(a, b)}
is Scott-continuous function. Moreover, we have Lf = ∂f .

1.2 Stably Locally Compact Space and Semi-strong Proximity
Lattice

We recall that in geometric logic one uses the open sets of a topological space as
propositions or semi-decidable properties [25,26]. If X is a topological space and
Ω(X) its lattice of open sets, a propositional geometric theory is constructed as
follows: For every open set a ∈ Ω(X), define a proposition Pa, i.e., every open
set of X provides a property or predicate. For open sets a and b with a ⊆ b
stipulate: (i) Pa � Pb. For a family of open sets S, stipulate: (ii) P∪S �

∨
a∈S Pa.

For a finite family of open sets S, stipulate: (iii)
∧

a∈S Pa � P∩S . The converses
of (ii) and (iii) follow from (i). The nullary disjunction in (ii) is interpreted as
false and the nullary conjunction in the converse of (iii) is interpreted as truth,
i.e., P∅ � false and PX � truth.

We regard x ∈ X as a model of the theory in which Pa is interpreted as true
iff x ∈ a, i.e., x |= a iff x ∈ a, or, a point is a model of a proposition if it is in the
open set representing the proposition. It is possible that different points give rise
to the same model, i.e., satisfy the same open sets, and it is also possible that
a model does not arise by points in X in this way. For so-called sober spaces,
as we will define below, we do have a one-to-one correspondence between points
and models.

A topological space X is called stably locally compact [2,18] if it is sober,
locally compact and if the intersection of two compact saturated sets is compact.
Recall that X is sober if its points are in bijection with the completely prime
filters of its lattice of open sets. (A set is saturated if it is the intersection of its
open neighbourhoods.) Equivalently, X is stably locally compact if and only if its
lattice of open sets is a distributive continuous lattice which is also arithmetic,
i.e., its way-below relation satisfies:

O � O1, O2 ⇒ O � O1 ∧ O2

The spaces R
n, IRn and C(Rn) are all stably locally compact spaces. The way-

below relation for Ω(Rn) is given by O1 � O2 iff O1 is compact and O1 ⊂ O2,
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whereas the way-below relation in C(Rn), and thus IRn, is given by Proposi-
tion 1. We can obtain a finitary representation of these spaces by a sub-lattice
of open sets as we will now describe.

A semi-strong proximity lattice [13] consists of a tuple (B;∨,∧, 0, 1;≺) in
which (B;∨,∧, 0, 1) is a distributive lattice such that ≺ is a binary relation on
B with ≺=≺ ◦ ≺ satisfying:

1. ∀a ∈ B M ⊂f B.M ≺ a ⇔
∨

M ≺ a.
2. ∀a ∈ B. a �= 1 ⇒ a ≺ 1.
3. ∀a, a1, a2 ∈ B. a ≺ a1, a2 ⇔ a ≺ a1 ∧ a2.
4. ∀a, x, y ∈ B. a ≺ x ∨ y ⇒

∃x′, y′ ∈ B. x′ ≺ x& y′ ≺ y & a ≺ x′ ∨ y′.

Here, M ⊂f B means that M is a finite (possibly empty) subset of B, and
M ≺ a means that ∀m ∈ M.m ≺ a.

The relation R ⊆ B1 × B2, between two semi-strong proximity lattice, is a
localic approximable mapping if it satisfies:

1. R ◦ ≺2= R
2. ≺1 ◦R = R.
3. ∀M ⊂f B1∀b ∈ B2.M R b ⇐⇒

∨
M R b.

4. ∀a ∈ B1. a �= 1 ⇒ aR 1.
5. ∀a ∈ B1∀a1, a2 ∈ B2. aR a1 & aR a2 ⇔ aR a1 ∧ a2.
6. ∀a ∈ B1∀M ⊂f B2. aR

∨
M ⇒

∃N ⊂f B1. a ≺1

∨
N &∀n ∈ N∃m ∈ M.nR m.

The identity approximable mapping on B is ≺B and composition of approx-
imable mappings is the usual composition of the relations in the same order as
for functions.

Let SL-Compact denote the category of all stably locally compact spaces
and continuous functions and let Semi-Strong PL denote the category of semi-
strong proximity lattice and approximable mappings. The following functors
between these categories establish an equivalence between them [13,19].

A : SL-Compact → Semi-Strong PL

G : Semi-Strong PL → SL-Compact

Given a stably locally compact space X, fix a basis B of its topology which
is closed under finite intersections and let A(X) be the semi-strong proximity
lattice based on B. Given a continuous function f : X1 → X2 between two stably
locally compact spaces, we have a localic approximable mapping Af : A(X1) →
A(X2) given by aAf b iff a � f−1(b).

Given a semi-strong proximity lattice B, the spectrum spec(B) of B is the
set of all prime filters of B. For x ∈ B let Ox = {F ∈ spec(B) : x ∈ F}. The
collection of Ox’s, x ∈ B, is a base of a topology over spec(B). Put,

G(B) = spec(B)
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Given a localic approximable mapping R : B1 → B2 define,

GR : spec(B1) → spec(B2)

by GR(F ) = {b2 ∈ B2 : ∃b1 ∈ F.b1 R b2}. We have, AGR
= R and GAf

= f .
Thus, the category of semi-strong proximity lattice with approximable mappings
is equivalent to the category of stably locally compact spaces and continuous
functions [13].

We now construct some canonical bases of C(Rn) and IRn, which provide
us with the semi-strong proximity lattices these spaces can be represented by.
Let B0

Rn , respectively B0
U , for U ⊂ R

n, be any basis of R
n, respectively U , that

consists of bounded convex open sets and is closed under finite intersections. We
let BRn , respectively BU , denote the semi-strong proximity lattice generated by
B0

R
, respectively B0

U . This means that every element of BR, respectively BU , is
a finite join of elements of B0

Rn , respectively B0
U [13].

It now follows, by Proposition 1, that B0
C(Rn) = {�a : a ∈ B0

Rn} is a basis of
the Scott topology σC(Rn), which is closed under finite intersections. Let BC(Rn)

be the semi-strong proximity lattice generated by B0
C(Rn). Thus, each element of

the semi-strong proximity lattice BC(Rn) is the finite join of elements of B0
C(Rn).

Finally, let T (U) be a basis of U ⊂ R
n consisting of open hyper-rectangles

in U with faces parallel to the coordinate planes and let T := T (Rn). Then
B0

IRn = {�a : a ∈ T } is a basis for σIRn . By using T (U), we similarly obtain
a basis B0

IU for IU ⊂ IRn. Again by Proposition 1(i) these bases are closed
under finite intersections. We let BIRn , respectively, BIU be the semi-strong
proximity lattices generated by B0

IRn , respectively, B0
IU . Thus, each element of

BIRn , respectively, BIU , is the finite join of elements of B0
IRn , respectively, B0

IU .
The functors A and G thus provide a bijection between the two hom-sets:

(IU → IR)
G
�
A

(BIU → BIR)

and between the two hom-sets:

(IU → C(Rn))
G

�
A

(BIU → BC(Rn))

These bijections are used later to deduce our Stone duality results.

1.3 Related Work

Differentiation in logical form for functions of type U ⊆ R
n → R was introduced

in [13]. These maps were represented by localic approximable mappings of type
BU → BR, and the localic approximable mapping of the L-derivative of these
functions have the type BU → BC(Rn). The strong tie of a with b, denoted by
δs(a, b), was defined as the collection of all functions f : a ⊆ U → R such that
there exists a′ ∈ B0

R
and b′ ∈ C(Rn) with a � a′, b � b′ and f ∈ δ(a′, b′).
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The approximable mappings R : BU → BR has Lipschitz constant O ∈
BC(Rn) in a ∈ BU , denoted by R ∈ Δ(a,O), if we have:

∀a1, a2 ≺ a, (a1, a2) ∈ Sep,∃a′
1, a

′
2 ∈ BR.

a1 R a′
1, a2 R a′

2, a
′
1 − a′

2 ≺ O · (a1 − a2)

where the separation predicate Sep ⊂ BU × BU means (a1, a2) ∈ Sep if there
exists a′

1, a
′
2 such that a1 ≺ a′

1, a2 ≺ a′
2 and a′

1∧a′
2 = 0. The strong knot Δs(a,O)

is defined as the set of approximable mappings R : BU → BR such that there
exists a′ ∈ BU , O′ ∈ BC(Rn) with a ≺ a′, O′ ≺ O and R ∈ Δ(a′, O′).

The strong ties and strong knots are dual to each others, i.e., R ∈ Δs(a,O)
iff GR ∈ δs(a,O). The Lipschitzian derivative of R : BU → BR is defined as the
approximable mapping

L(R) = sup{AOχa
: R ∈ Δs(a,O)}

It turns out that L(R) = ALGR
and we have a weak calculus which matches that

for the Clarke sub-gradient stated after Eq. (1), i.e., L(R1)+L(R2) ⊆ L(R1+R2)
and R1 · L(R2) + R2 · L(R1) ⊆ L(R1 · R2), and if at least one of R1 and R2 is a
continuously differentiable approximable mapping then equality holds. A weak
form of the chain rule also holds for composition of approximable mappings
corresponding to that for the Clarke sub-gradient.

2 L-derivative with Imprecise Inputs

We start by defining a notion of tie for Scott continuous map of type f : IU → IR,
for an open convex subset U ⊂ R

n. From now on, in the rest of the paper, we
assume f : IU → IR is Scott-continuous.

Definition 1. Let f : IU ⊆ IRn → IR where U ⊂ R
n is an open set, be Scott

continuous and a ∈ T (U), an open hyper-rectangle in U , and b ∈ C(Rn). We
say f has a generalized Lipschitz constant b in �a and write δ(�a, b) if we have:

∀x, y ∈ �a, x ∩ y = ∅. f(x) − f(y) ⊆ b · (x − y)

In the one dimensional case, this new notion is a modification of that in [12]
as we in Definition 1, require the hyper-rectangles x and y to be disjoint, i.e.,
inconsistent in IU . Thus, the condition for membership of a tie is weaker. We
will need this weaker condition in order to develop the Stone duality result later
in the paper.

We show that despite this weaker notion, if f ∈ δ(�a, b) with b �= ⊥, then
f preserves maximal elements and its restriction to maximal elements gives a
Lipschitz map. In other words f is the extension of a classical Lipschitz function
in Ia.
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Proposition 2. Let f ∈ δ(�a, b), where a ⊂ R
n is a open hyper-rectangle and

b ∈ C(Rn) \ {⊥}, then for each x ∈ a, f({x}) ∈ IR is maximal and the induced
function f̂ : a ⊂ R

n → R is Lipschitz and satisfies:

∀x1, x2 ∈ a. (b · (x1 − x2))− ≤ f̂(x1) − f̂(x2) ≤ (b · (x1 − x2))+ (2)

∀x1, x2 ∈ a. |f̂(x1) − f̂(x2)| ≤ ‖b‖‖x1 − x2‖, (3)

where ‖b‖ = max{‖L‖|L ∈ b}.

Corollary 1. If f ∈ δ(�a, b) then f̂ ∈ δ(a, b).

Definition 2. We say a Scott continuous function of type IU ⊂ IRn → IR is
locally Lipschitz in �a, for a ∈ T (U), if it belongs to a tie δ(�a, b) with b �= ⊥.

Given a continuous function f : U ⊆ R
n → R, its maximal extension to a

Scott continuous function IU ⊆ IRn → IR is denoted by If with If(x) = f [x]
for x ∈ IU when x �= ⊥ and If(⊥) = ⊥.

Corollary 2. f ∈ δ(a, b) iff If ∈ δ(�a, b).

If (A,�) is a dcpo then the consistency predicate Con(A,
) and Con(A,�) for
a finite subset {ai : i ∈ I} with respect to � and � are defined as follow:

Con(A,
){ai : i ∈ I} ⇐⇒ ∃a ∈ A,∀i ∈ I. ai � a

and
Con(A,�){ai : i ∈ I} ⇐⇒ ∃a ∈ A,∀i ∈ I. ai � a

For the collection (biχai
)i∈I or (biχ�ai

)i∈I for finite indexing set I where ai ∈
Ω(Rn) are open hyper-rectangles and bi ∈ (D,�), the function space consistency
predicate ConRn→D or ConIRn→D is defined as follows:

ConRn→D(biχai)i∈I ⇐⇒ ∀J ⊆ I. [Con(Ω(Rn),�){ai : i ∈ J} ⇒ Con(D,�){bi : i ∈ J}]

ConIRn→D(biχ�ai
)i∈I ⇐⇒ ∀J ⊆ I. [Con(Ω(IRn),�){�ai : i ∈ J} ⇒ Con(D,�){bi : i ∈ J}].

It follows that the supremum supi∈I biχai
exists iff ConRn→D(biχai

)i∈I and
supi∈I biχ�ai

exists iff ConIRn→D(biχ�ai
)i∈I .

Proposition 3. For any indexing set J the family of step functions (bjχ�aj
)j∈J

is consistent if
⋂

j∈J δ(�aj , bj) �= ∅.

Proof. Suppose f ∈
⋂

j∈J δ(�aj , bj) then f̂ ∈
⋂

j∈J δ(aj , bj), and hence
(bjχaj

)j∈J is consistent, which implies (bjχ�aj
)j∈J is consistent. �

Recall that a crescent in R
n is the intersection of a closed and an open set. Given

two points p, q ∈ R
n, we denote the closed, respectively open, line segment

between them by [p, q] = {λp + (1 − λ)q : 0 ≤ λ ≤ 1}, respectively (p, q) =
{λp + (1 − λ)q : 0 < λ < 1}.
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Proposition 4. We have δ(�a, b) ⊇
⋂

j∈J δ(�aj , bj) if bχ�a � supj∈J bjχ�aj
.

Proof. Let g := supj∈J bjχ�aj
. Suppose bχ�a � supj∈J bjχ�aj

, then �a ⊂⋃
j∈J �aj and thus a ⊂

⋃
j∈J aj . In addition, by considering the restriction of g

to the maximal elements of IRn, we find that a is partitioned by the open sets
aj , j ∈ J , into a finite number of disjoint crescents ci, i ∈ I, with

g({r}) = sup
ci⊂aj

bj � b

for r ∈ ci. Let f ∈
⋂

j∈J δ(�aj , bj). We show that f ∈ δ(�a, b). Suppose we have
two hyper-rectangles x, y ∈ �a with x ∩ y = ∅. Let the points p ∈ x and q ∈ y
be such that ‖p − q‖ is the minimum distance between x and y. Then [p, q] is
partitioned by the crescents ci, i ∈ I, into a finite number of one-dimensional
intervals such that the one-dimensional interior of each is contained in ci for
some i ∈ I. Let r0, r1, . . . , rk ∈ R

n be the boundary points of these intervals
ordered from p to q. Then, using the continuity of f̂ , we have:

f({rt}) − f({rt+1}) ⊆ sup
(rt,rt+1)⊆cj

bj · ({rt} − {rt+1}) ⊆ b · ({rt} − {rt+1})

for 0 ≤ t ≤ n − 1. Since x ∈ �a, there exists j ∈ J with x ∈ �aj . Moreover,
x ⊆ aj iff r0 ∈ aj . Similarly, y ⊆ aj iff rk ∈ aj . From these relations, we obtain:

f(x) − f({r0}) ⊆ sup
x⊂aj

bj · (x − {r0}), f({rk}) − f(y) ⊆ sup
y⊂aj

bj · ({rk} − y)

Thus,

f(x)−f(y) = f(x) − f({r0}) + f({r0}) − · · · − f({rk}) + f({rk}) − f(y)

⊆ b · (x −
(

k−1∑

t=0

f({rt}) − f({rt})

)

− y) = b · (x − y)�

Definition 3. The derivative of a Scott continuous map f : IU ⊂ IRn → IR is
the map:

Lf = sup
f∈δ(�a,b)

bχ�a : IU → C(Rn)

where U is a convex open subset of R
n.

Theorem 1. (i) Lf is well-defined and Scott continuous.
(ii) f ∈ δ(�a, b) iff bχ�a � Lf .

Proof. (i) Let the indexing set J be defined by j ∈ J ⇐⇒ f ∈ δ(�aj , bj),
then f ∈

⋂
j∈J δ(�aj , bj). Thus, by Proposition 3 (bjχ�aj

)j∈J is consistent
therefore, Lf = supf∈δ(�a,b) bχ�a exists and is Scott continuous.

(ii) If f ∈ δ(�a, b) then clearly bχ�a � Lf . Now take a′ � a and b′ � b.
Then b′χ�a′ � bχ�a � Lf and there exists a finite indexing set J such that
b′χ�a′ � supj∈J bjχ�aj

and f ∈ δ(�aj , bj) for j ∈ J . Now by Proposition
4, we have

⋂
j∈J δ(�aj , bj) ⊆ δ(�a′, b′), and thus, f ∈ δ(�a′, b′). From this,

it follows that f ∈ δ(�a, b). �
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If f : U ⊆ R
n → R is a locally Lipschitz map, then the Clarke sub-gradient

Lf : U → C(Rn) extends, by Scott’s extension theory for densely injective
spaces [24], to a Scott continuous map I(Lf) : IU → C(Rn). We then have:

Proposition 5.
L(If) = I(Lf)

Proof. This follows from the relation:

f ∈ δ(a, b) ⇐⇒ If ∈ δ(�a, b),

for all a ∈ Ω(U) and b ∈ C(Rn). �

The following example shows that in the context of the L-derivative of interval
functions, Clarke’s weak calculus no longer holds for Sum.

Example 1. Let f, g : IR → IR defined by f(x) = x and g(x) = −x, then
Lf(x) = {1} and Lg(x) = {−1} and thus Lf(x) + Lg(x) = {0}. On the other
hand, (f + g)(x) = f(x) + g(x) = x − x and it follows that f + g /∈ δ(�a, {0}),
for any open set a ⊂ R, and consequently L(f + g) �= {0}. Hence, L(f + g)(x) �

Lf(x) + Lg(x).

We say an interval [r−, r+] is positive , respectively negative, if r− > 0, respec-
tively r+ < 0. The above counter-example is the consequence of the fact that
in interval arithmetic, while the relation (u + v)w ⊆ uw + vw always holds for
u, v, w ∈ IR, the converse relation (u + v)w ⊇ uw + vw may fail. However, if u
and v are both positive or both negative then the converse also holds [21, p. 13].

We can obtain a weak calculus for sum and product of two functions f and g if
we first use an operation that is routinely performed in interval analysis, namely
to approximate the values Lf(x) and Lg(x) with the smallest axes aligned hyper-
rectangle containing it, and then assume that the two induced hyper-rectangles
have the same sign in each of their components. We now formalise this procedure.

Let H : C(Rn) → IRn be the map that takes every convex compact set
to the smallest axes aligned hyper-rectangle containing it. Then, it is easy to
check that H is Scott continuous. Let πi : R

n → R be the projection of the ith
coordinate and extend it pointwise to its maximal extension Iπi : IRn → IR.
Define the predicate Sgn ⊂ (IRn)2 by (x, y) ∈ Sgn if for each i = 1, . . . , n the
two intervals Iπi(x) and Iπi(y) are either both positive or both negative.

Suppose x, y, z ∈ IRn and (y, z) ∈ Sgn, then the interval Iπi(y)Iπi(z) is
positive for each i = 1 . . . , n and we have x(y + z) = xy + xz. In fact,

Iπi(x)(Iπi(y) + Iπi(z)) = Iπi(x)Iπi(y) + Iπi(x)Iπi(z),

and hence:

x(y + z) =
n∑

i=1

Iπi(x)(Iπi(y) + Iπi(z)) =
n∑

i=1

Iπi(x)Iπi(y) + Iπi(x)Iπi(z)

=
n∑

i=1

Iπi(x)Iπi(y) +
n∑

i=1

Iπi(x)Iπi(z) = xy + xz



470 A. Edalat and M. Maleki

Proposition 6. Suppose f, g : IU ⊆ IRn → IR are locally Lipschitz functions
and x ∈ IU is such that (H(Lf(x)),H(Lg(x))) ∈ Sgn. Then:

1.
H(Lf(x)) + H(Lg(x)) ⊇ H(L(f + g)(x))

2. If, in addition, (f(x), g(x)) ∈ Sgn, then we also have:

f(x)H(Lg(x)) + g(x)H(Lf(x)) ⊇ H(L(fg)(x))

We will provide the proof for a weak form of the chain rule, which is more involved
compared to sum and product. First consider the extended scalar multiplication
M : C(Rn) × IR+ → C(Rn), where R

+ is the set of non-negative reals, with
M(b, x) = {ur : u ∈ b, r ∈ x}. Then, M is well-defined and Scott continuous.
For ease of presentation, we write M(b, x) = bx.

Proposition 7. If g : IU1 ⊆ IRn → IR and f : IU2 ⊆ IR → IR and Im(g) ⊂
IU2 with (Lf)(g(x)) ∈ IR+, are Scott-continuous, then:

((Lf) ◦ g)(x)Lg(x) ⊇ L(f ◦ g)(x)

3 Lipschitzian Approximable Mapping

Recall that, since IRn, C(Rn) and R
n are stably locally compact space and

the category of stably locally compact spaces with continuous functions and
the category of semi-strong proximity lattice with approximable mappings are
equivalent, any continuous function f : IU ⊂ IRn → IR defines an approximable
mapping Af : BIU → BIR by �aAf�a′ ⇐⇒ �a � f−1(�a′). On the other hand
any approximable mapping with type R : BIRn → BD, where D is either IR or
IRn or C(Rn), gives us a continuous function GR : IRn → D.

Lemma 1. Let f : IU ⊂ IRn → IR be a Scott continuous function such that
f({x}) is singleton for all x ∈ U . Suppose a1 is an open hyper-rectangle in U

and a2 is an open interval. If f̂ : U ⊂ R
n → R is the induced function with

f({x}) = {f̂(x)} then:

�a1 � f−1(�a2) ⇒ a1 � f̂−1(a2) �a1 Af �a2 ⇒ a1 Af̂ a2

Recall the definition of the predicate Sep ⊂ BR × BR from Subsect. 1.3.

Definition 4. We say an approximable mapping R : BIU → BIR, where U ⊂ R
n

is a convex open set, has Lipschitzian constant O in �a, with O ∈ B0
Rn and

a ∈ T (U), if:

∀ a1, a2 ∈ T (U). a1, a2 ≺ a& (a1, a2) ∈ Sep ∃ a′
1, a

′
2 ∈ BR.

�a1 R �a′
1,�a2 R �a′

2 & a′
1 − a′

2 ≺ O · (a1 − a2),

and we say R is Lipschitzian in �a. The set of all approximable mappings with
the above property is denoted by Δ(�a,O), called the knot of �a and O.
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Note that, by Proposition 1, the last formula in Definition 4 is equivalent to
�a′

1 − �a′
2 ≺ �O · (�a1 − �a2). Given this equivalence, it is simpler to use the

formula without the modal operator � as we have done in this definition. By
Proposition 1 and Stone duality, we have:

Proposition 8. Suppose f : IU → IR is a Scott continuous function such that
f({x}) is singleton for every x ∈ U . Then we have: Af̂ ∈ Δ(a,O) if Af ∈
Δ(�a,O).

From Δ(�a,O), a Lipschitz property of GR can be deduced as follows.

Proposition 9. If R : BIU → BIR is an approximable mapping such that R ∈
Δ(�a,O) then:

∀x, y ∈ �a. x ∩ y = ∅ ⇒ GR(x) − GR(y) ⊆ O · (x − y)

Proof. Let x, y ∈ �a and x ∩ y = ∅, then consider a1, a2 ∈ T (U) such that
(a1, a2) ∈ Sep and x ∈ �a1, y ∈ �a2. Hence, there exist a′

1, a
′
2 ∈ BR such that

�ai R �a′
i, i = 1, 2 and:

a′
1 − a′

2 ≺ O · (a1 − a2)

By Stone duality we have R = RGR
. Hence �ai ≺ G−1

R (�a′
i), i = 1, 2, and thus:,

GR(x) − GR(y) ⊆ O · (a1 − a2).

Since this holds for all sufficiently small a1 and a2 that contain x and y respec-
tively, we obtain: GR(x) − GR(y) ⊆ O · (x − y). �

Corollary 3. If R ∈ Δ(�a,O) then GR ∈ δ(�a,O).

Thus, if Af is a Lipschitzian approximable mapping of type BIU → BIR then
f is a Lipschitz function of type IU → IR and hence f({x}) is a singleton for
every x ∈ U and the induced function f̂ : U → R is also Lipschitz.

Now we are in a position to obtain duality results similar to those in [13] for
functions of type IU ⊆ IRn → IR.

Proposition 10. Let f ∈ δ(�a, b) then for every a0 ∈ T such that a0 ≺ a and
every O ∈ B0

Rn such that b ⊂ O we have Af ∈ Δ(�a0, O).

Proof. Suppose a0 ≺ a. Let a1, a2 ∈ T (U) with (a1, a2) ∈ Sep and a1, a2 ≺ a0.
Then, since a1, a2 ∈ IU , from definition of the tie δ(�a, b), we have,

f(a1) − f(a2) ⊆ b · (a1 − a2)
⊆ O · (a1 − a2).

Since f(a1), f(a2) ∈ IR are compact, there exist open hyper-rectangles a′
1, a

′
2 ∈

BR such that f(ai) ⊆ a′
i, i = 1, 2, and a′

1 − a′
2 ≺ O · (a1 − a2). This implies

Af ∈ Δ(�a0, O). �
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Example 2. Let f : IR → IR be given by:

f([x1, x2]) = [x1 − δ(x2 − x1), x2 + δ(x2 − x1)]

for δ > 0. The restriction f̂ of f to the maximal elements of IR is the identity
function of type f̂ = Id : R → R. Since IId �= f , the map f is not the maximal
extension of the identity map Id. On the other hand, Af : BIR → BIR satisfies
Af ∈ Δ(�R, O) iff (1 − δ, 1 + δ) ⊆ O. However, Af̂ ∈ Δ(R, O) iff 1 ∈ O.

The following two propositions represent a domain isomorphism between
the function space (IU → C(Rn)) and the domain of approximable mappings
(BIU → BC(Rn)) ordered by inclusion.

Proposition 11. 1. For f1, f2 : IU → C(Rn) we have:

f1 � f2 ⇐⇒ Af1 ⊆ Af2

2. For R1, R2 : BIU → BC(Rn) we have:

R1 ⊆ R2 ⇐⇒ GR1 � GR2

Proposition 12. 1. If (fi)i∈I is a directed set in IU → C(Rn), with supremum
f = supi∈I fi, then

⋃
i∈I Afi

= Af in App(BIU , BC(Rn)).
2. If (Ri)i∈I is a directed set in App(BIU , BC(Rn)) then supi∈I GRi

= GR in
(IU → C(Rn)) where R = supi∈I Ri.

Definition 5. If a is an open hyper-rectangle and O is a basic convex open
set then the single-step approximable mapping η(�a,O) is defined as η(�a,O) =
AOχ�a

: BIU → BC(Rn).

For defining the Lipschitzian derivative of an approximable mapping we first
need to define the notions of a strong tie and a strong knot.

Definition 6. We say f : IU → IR has a strong set-valued Lipschitz constant
b ∈ C(Rn) in �a, for a ∈ T (U), denoted by f ∈ δs(�a, b), if there exist a′ ≺ a
and b′ ∈ C(Rn) with b �C(Rn) b′ such that f ∈ δ(�a′, b′). We call δs(�a, b) the
strong single-tie of �a with b.

From general results about single-step functions, [16] we know that if bχ�a �
Lf , then for every x ∈ �a we have b � Lf(x), and hence, Lf(x) ∈ �b. This means
Lf(�a) ⊆ � b. Moreover �a � (Lf)−1( � b).

Similar to Proposition VII.3 in [13] and its corollary, we have:

Proposition 13. If f : IU → IR is locally Lipschitz, then:

f ∈ δs(�a, b) ⇐⇒ bχ�a � Lf

Lf = sup{bχ�a : bχ�a � Lf} = sup{bχ�a : f ∈ δs(�a, b)}
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Definition 7. We say an approximable mapping R : BIU → BIR has strong
Lipschitz constant O in �a, for O ∈ B0

Rn and a ∈ T (U), denoted by R ∈
Δs(�a,O), if there exist a′ ∈ T (U) with a ≺ a′ and O′ ∈ B0

Rn with O′ ≺ O such
that R ∈ Δ(�a′, O′).

Proposition 14. 1. If f ∈ δs(�a, b) then for all O ∈ B0
Rn with b ⊂ O we have

Af ∈ Δs(�a,O).
2. If Af ∈ Δs(�a,O) then there exists b ⊂ O such that f ∈ δs(�a, b).

Proof. 1. Let f ∈ δs(�a, b) and b ⊂ O, then there exists a′ ∈ T (U) with a ≺ a′

and b′ with b � b′ such that f ∈ δ(�a′, b′). By the interpolation property of
≺ there exists a0 with a ≺ a0 ≺ a′ and O0 with b ⊂ O0 ≺ O. By Proposition
10 we have Af ∈ Δ(�a0, O0) and thus Af ∈ Δs(�a,O).

2. Let Af ∈ Δs(�a,O) then by the definition of strong knot there exists a′ with
a ≺ a′ and O′ with O′ ≺ O such that Af ∈ Δ(�a′, O′). By Corollary 3, f ∈
δ(�a′, O′). By the interpolation property, there exists O′′ with, O′ ≺ O′′ ≺ O.
Let b′ = O′ and b = O′′ then b ≺ b′ and f ∈ δ(�a′, b′). Hence, f ∈ δs(�a, b).
�

Finally, we obtain the duality between strong ties and strong knots extending
the main result in [13] to functions with interval input and output.

Corollary 4. We have R ∈ Δs(�a,O) iff GR ∈ δs(�a,O). Dually, we have
f ∈ δs(�a, b) iff Af ∈ Δs(�a, b◦).

Definition 8. Let R : BIU → BIR be a Lipschitzian approximable mapping. The
Lipschitzian derivative of R is defied as:

L(R) = sup{η(�a,O) : R ∈ Δs(�a,O)}

which is of type BIU → BC(Rn).

The following theorem extends Theorem VII.12 in [13] to functions with
interval input and output.

Theorem 2. The Lipschitzian derivative of a Lipschitzian approximable map-
ping R : BIU → BIR is an approximable mapping and we have: L(R) = ALGR

.

4 Conclusion

We have developed a notion of sub-differentiation for Scott continuous maps
which take hyper-rectangles in a finite dimensional Euclidean spaces to compact
real intervals and is itself a Scott continuous map. This extends the domain of
application of Interval Analysis to the classical derivative. It also extends Clarke’s
theory and that of the L-derivative to functions with imprecise input/output as
one encounters in interval analysis and exact real number computation. The
classical Clarke operator commutes with the extension operator that extends a
non-empty convex and compact valued map of a finite dimensional Euclidean
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spaces to the space of the hyper-rectangles of the Euclidean space. We have
derived a calculus for sub-differentiation of interval maps which is weaker than
the corresponding Clarkes calculus for point maps. A Stone duality framework
for sub-differentiation of interval maps is also constructed which allows for a pro-
gram logic view of sub-differentiation. We envisage several areas for immediate
further work, namely an implementation of this work in Haskell, an implemen-
tation in a theorem prover such as Coq and a derivation of a weak calculus for
constructors of approximable mappings which would match the calculus for the
interval functions.

References

1. Haskell Implementation of IC-Reals for Exact Real Computation. Imperial College
London. http://www.doc.ic.ac.uk/exact-computation/Haskell

2. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3. Clarendon,
Oxford (1994)
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