61 research outputs found
Co-circulation of West Nile virus and distinct insect-specific flaviviruses in Turkey
Background: Active vector surveillance provides an efficient tool for monitoring the presence or spread of emerging or re-emerging vector-borne viruses. This study was undertaken to investigate the circulation of flaviviruses. Mosquitoes were collected from 58 locations in 10 provinces across the Aegean, Thrace and Mediterranean Anatolian regions of Turkey in 2014 and 2015. Following morphological identification, mosquitoes were pooled and screened by nested and real-time PCR assays. Detected viruses were further characterised by sequencing. Positive pools were inoculated onto cell lines for virus isolation. Next generation sequencing was employed for genomic characterisation of the isolates. Results: A total of 12,711 mosquito specimens representing 15 species were screened in 594 pools. Eleven pools (2%) were reactive in the virus screening assays. Sequencing revealed West Nile virus (WNV) in one Culex pipiens (s.l.) pool from Thrace. WNV sequence corresponded to lineage one clade 1a but clustered distinctly from the Turkish prototype isolate. In 10 pools, insect-specific flaviviruses were characterised as Culex theileri flavivirus in 5 pools of Culex theileri and one pool of Cx. pipiens (s.l.), Ochlerotatus caspius flavivirus in two pools of Aedes (Ochlerotatus) caspius, Flavivirus AV-2011 in one pool of Culiseta annulata, and an undetermined flavivirus in one pool of Uranotaenia unguiculata from the Aegean and Thrace regions. DNA forms or integration of the detected insect-specific flaviviruses were not observed. A virus strain, tentatively named as “Ochlerotatus caspius flavivirus Turkey”, was isolated from an Ae. caspius pool in C6/36 cells. The viral genome comprised 10,370 nucleotides with a putative polyprotein of 3,385 amino acids that follows the canonical flavivirus polyprotein organisation. Sequence comparisons and phylogenetic analyses revealed the close relationship of this strain with Ochlerotatus caspius flavivirus from Portugal and Hanko virus from Finland. Several conserved structural and amino acid motifs were identified. Conclusions: We identified WNV and several distinct insect-specific flaviviruses during an extensive biosurveillance study of mosquitoes in various regions of Turkey in 2014 and 2015. Ongoing circulation of WNV is revealed, with an unprecedented genetic diversity. A probable replicating form of an insect flavivirus identified only in DNA form was detected
Risk factors for cutaneous leishmaniasis in Cukurova region, Turkey
a b s t r a c t We conducted a case-control study to evaluate risk factors for cutaneous leishmaniasis caused by Leishmania infantum outbreaks in villages in the Cukurova region, South Anatolia, Turkey. 282 respondents from eight villages were interviewed using structured questionnaires. Epidemiological and clinical characteristics, personal protection and knowledge of leishmania were analyzed. Young people, aged from 5-19 years, were found to be the most endangered group of villagers. The concurrent presence of both lesions and scars in nine persons may indicate repeated infections. Sleeping without bed nets, ownership of a dog and cattle ownership (living close to a barn and storage of dried dung according univariate analyses) were associated with a significantly increased risk of leishmania infection. Non-impregnated bed nets provided only partial protection, but their use decreased the risk approximately 1.6 times. Further research on the role of dogs in the transmission cycle and the effect of suitable interventions are needed to design the best strategy for disease control. Results suggest that personal protection should be increased, particularly among outdoor sleepers, with insecticide-treated bed nets suggested as the best choice
Revision of the species composition and distribution of Turkish sand flies using DNA barcodes
WOS: 000483025000002PubMed ID: 31439012Background Currently, knowledge regarding the phlebotomine sand fly (Diptera: Psychodidae) fauna of Turkey is restricted to regions with endemic leishmaniasis. However, rapidly changing environmental and social conditions highlight concerns on the possible future expansion of sand fly-borne diseases in Turkey, promoting risk assessment through biosurveillance activities in non-endemic regions. Traditional morphological approaches are complicated by extensive cryptic speciation in sand flies, thus integrated studies utilizing DNA markers are becoming increasingly important for correct sand fly identification. This study contributes to the knowledge of the sand fly fauna in understudied regions of Turkey, and provides an extensive DNA barcode reference library of expertly identified Turkish sand fly species for the first time. Methods Fly sampling was conducted at 101 locations from 29 provinces, covering all three biogeographical regions of Turkey. Specimens were morphologically identified using available keys. Cytochrome c oxidase I (cox1) barcode sequences were analyzed both for morphologically distinct species and those specimens with cryptic identity. A taxon identity tree was obtained using Neighbor Joining (NJ) analysis. Species boundaries among closely related taxa evaluated using ABGD, Maximum Likelihood (ML) and haplotype network analyses. Sand fly richness of all three biogeographical regions were compared using nonparametric species richness estimators. Results A total of 729 barcode sequences (including representatives of all previously reported subgenera) were obtained from a total of 9642 sand fly specimens collected in Turkey. Specimens belonging to the same species or species complex clustered together in the NJ tree, regardless of their geographical origin. The species delimitation methods revealed the existence of 33 MOTUs, increasing the previously reported 28 recorded sand fly species by 17.8%. The richest sand fly diversity was determined in Anatolia, followed by the Mediterranean, and then the Black Sea regions of the country. Conclusions A comprehensive cox1 reference library is provided for the sand fly species of Turkey, including the proposed novel taxa discovered herein. Our results have epidemiological significance exposing extensive distributions of proven and suspected sand fly vectors in Turkey, including those areas currently regarded as non-endemic for sand fly-borne disease.Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [SBAG: 114S999]; Armed Forces Health Surveillance Board, Global Emerging Infections Surveillance and Response System (AFHSBGEIS), USA; US ArmyUnited States Department of Defense [W911QY-16-C-0160, P0034_18_WR]; Hacettepe University Scientific Research UnitHacettepe University [01001601001]This study was funded by The Scientific and Technological Research Council of Turkey (SBAG: 114S999) and the Armed Forces Health Surveillance Board, Global Emerging Infections Surveillance and Response System (AFHSBGEIS), USA; FY18 Award P0034_18_WR (PI: Y-ML) under US Army subcontract W911QY-16-C-0160 to Hacettepe University). The research was supported by Hacettepe University Scientific Research Unit (01001601001). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The material to be published reflects the views of the authors and should not be construed to represent those of the US Department of the Army or the US Department of Defense
Assessment of diagnostic doses for widely used synthetic pyrethroids (Deltamethrin & Permethrin) in an endemic focus of leishmaniasis in Turkey
WOS: 000384846700007PubMed ID: 27688146Background: Leishmania is a group of parasitic flagellated protozoons, which are transmitted by female sand flies and produces health problems in humans and also in wild and domestic animals. So far, 25 Phlebotomus and 4 Sergentomyia species were recorded in Turkey including proven or possible vectors of Leishmania spp. As no single insecticide susceptibility test was conducted targeting the sand flies in Turkey, we aimed to determine the diagnostic dose against two commonly used synthetic pyrethroids (deltamethrin and permethrin) in a hyperendemic area for leishmaniasis. Methods: Sand flies were collected from villages of Adana in 2-4 September 2013 using Centers for Disease Control and Prevention (CDC) light traps and transferred to the laboratory. The World Health Organisation tube test method was conducted using self-prepared filter papers with different concentrations. In order to determine the diagnostic dose, lethal doses (LD) were calculated by EPA Probit Analysis. Sand flies used in the experiments were dissected, mounted and identified. Results: For the lowest (0.025 %) and highest dose of permethrin (0.5 %), the mortality rate was recorded as 52.6 % and 100 % by the end of 24-h period and the diagnostic dose was recorded as 0.36 %. The mortality rate for lowest (0.0025 %) and highest (0.05 %) doses of deltamethrin was recorded as 54.8 % and 100 %. The diagnostic dose of deltamethrin was determined as 0.9 %. Conclusion: An insecticide susceptibility study was conducted in Turkey for the first time and effective doses were determined by calculating the LDs. According to presented results, the wild population of sand flies collected from a hyper-endemic region of Adana Province is still susceptible to deltamethrin and permethrin.Armed Forces Health Surveillance Center, Global Emerging Infections Surveillance and Response System (AFHSC-GEIS), United States; National Research Council (NRC); EUEuropean Union (EU) [FP7-261504 EDENext]This study was partially supported by The Armed Forces Health Surveillance Center, Global Emerging Infections Surveillance and Response System (AFHSC-GEIS), United States (with Yvonne Marie-Linton as the principal investigator). This manuscript was prepared whilst YML held a National Research Council (NRC) Research Associateship Award at the Walter Reed Army Institute of Research. This research was performed in part under a Memorandum of Understanding between the Walter Reed Army Institute of Research and the Smithsonian Institution, with institutional support provided by both organizations. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The material to be published reflects the views of the authors and should not be construed to represent those of the US Department of the Army or the US Department of Defense.; This work was partially supported by EU grant FP7-261504 EDENext and is catalogued by the EDENext Steering Committee as EDENext451 (http://www.ede-next.eu). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission
- …