30 research outputs found

    Emerging investigator series: : Use of behavioural endpoints in regulation of chemicals

    Get PDF
    Interest in behavioural ecotoxicology is growing, partly due to technological and computational advances in recording behaviours but also because of improvements of detection capacity facilitating reporting effects at environmentally relevant concentrations. The peer-reviewed literature now contains studies investigating the effects of chemicals, including pesticides and pharmaceuticals, on migration, dispersal, aggression, sociabilitygrouping, reproduction, feeding and anti-predator behaviours in vertebrates and invertebrates. To understand how behavioural studies could be used in regulatory decision-making we: 1) assessed the legal obstacles to using behavioural endpoints in EU chemicals regulation; 2) analysed the known cases of use of behavioural endpoints in EU chemicals regulation; and 3) provided examples of behavioural endpoints of relevance for population level effects. We conclude that the only legal obstacle to the use of behavioural endpoints in EU chemicals regulation is whether an endpoint is considered to be relevant at the population level or not. We also conclude that ecotoxicity studies investigating behavioural endpoints are occasionally used in the EU chemicals regulation, and underscore that behavioural endpoints can be relevant at the population level. To improve the current use of behavioural studies in regulatory decision-making contribution from all relevant stakeholders is required. We have the following recommendations: 1) researchers should conduct robust, well-designed and transparent studies that emphasize the relevance of the study for regulation of chemicals; 2) editors and scientific journals should promote detailed, reliable and clearly reported studies; 3) regulatory agencies and the chemical industry need to embrace new behavioural endpoints of relevance at the population level

    Can hydraulic design explain patterns of leaf water isotopic enrichment in C3 plants?

    Get PDF
    H2 18 O enrichment develops when leaves transpire, but an accurate generalized mechanistic model has proven elusive. We hypothesized that leaf hydraulic architecture may affect the degree to which gradients in H2 18 O develop within leaves, influencing bulk leaf stable oxygen isotope enrichment (ΔL ) and the degree to which the Péclet effect is relevant in leaves. Leaf hydraulic design predicted the relevance of a Péclet effect to ΔL in 19 of the 21 species tested. Leaves with well-developed hydraulic connections between the vascular tissue and the epidermal cells through bundle sheath extensions and clear distinctions between palisade and spongy mesophyll layers (while the mesophyll is hydraulically disconnected) may have velocities of the transpiration stream such that gradients in H2 18 O develop and are expressed in the mesophyll. In contrast, in leaves where the vascular tissue is hydraulically disconnected from the epidermal layers, or where all mesophyll cells are well connected to the transpiration stream, velocities within the liquid transport pathways may be low enough that gradients in H2 18 O are very small. Prior knowledge of leaf hydraulic design allows informed selection of the appropriate ΔL modelling framework.K.E.L. was supported by an Australian Postgraduate Award and A.S. was supported by an Australian Postgraduate Award and International Postgraduate Research Support. Australian Research Council, Grant/Award Number: DP17010427

    Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife

    Get PDF
    Chemical contaminants (e.g. metals, pesticides, pharmaceuticals) are changing ecosystems via effects on wildlife. Indeed, recent work explicitly performed under environmentally realistic conditions reveals that chemical contaminants can have both direct and indirect effects at multiple levels of organization by influencing animal behaviour. Altered behaviour reflects multiple physiological changes and links individual- to population-level processes, thereby representing a sensitive tool for holistically assessing impacts of environmentally relevant contaminant concentrations. Here, we show that even if direct effects of contaminants on behavioural responses are reasonably well documented, there are significant knowledge gaps in understanding both the plasticity (i.e. individual variation) and evolution of contaminant-induced behavioural changes. We explore implications of multi-level processes by developing a conceptual framework that integrates direct and indirect effects on behaviour under environmentally realistic contexts. Our framework illustrates how sublethal behavioural effects of contaminants can be both negative and positive, varying dynamically within the same individuals and populations. This is because linkages within communities will act indirectly to alter and even magnify contaminant-induced effects. Given the increasing pressure on wildlife and ecosystems from chemical pollution, we argue there is a need to incorporate existing knowledge in ecology and evolution to improve ecological hazard and risk assessments

    Three Pathogens in Sympatric Populations of Pumas, Bobcats, and Domestic Cats: Implications for Infectious Disease Transmission

    Get PDF
    Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases – vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii – varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the mechanisms driving disease exposure and to predict zones of cross-species pathogen transmission among wild and domestic felids

    Environmentally relevant concentration of caffeine - effect on activity and circadian rhythm in wild perch

    Get PDF
    We studied the ecological consequences of widespread caffeine contamination by conducting an experiment focused on changes in the behavioral traits of wild perch (Perca fluviatilis) after waterborne exposure to 10 μg L−1 of caffeine. We monitored fish swimming performance during both light and dark conditions to study the effect of caffeine on fish activity and circadian rhythm, using a novel three-dimensional tracking system that enabled positioning even in complete darkness. All individuals underwent three behavioral trials—before exposure, after 24 h of exposure, and after 5 days of exposure. We did not observe any effect of the given caffeine concentration on fish activity under light or dark conditions. Regardless of caffeine exposure, fish swimming performance was significantly affected by both the light-dark conditions and repeating of behavioral trials. Individuals in both treatments swam significantly more during the light condition and their activity increased with time as follows: before exposure < after 24 h of exposure < after 5 days of exposure. We confirmed that the three-dimensional automated tracking system based on infrared sensors was highly effective for conducting behavioral experiments under completely dark conditions

    Stability and uptake of methylphenidate and ritalinic acid in nine-spine stickleback (Pungitius pungitius) and water louse (Asellus aquaticus)

    No full text
    The presence of human pharmaceuticals in the environment has garnered significant research attention because these compounds may exert therapeutic effects on exposed wildlife. Yet, for many compounds, there is still little research documenting their stability in the water column and uptake in organism tissues. Here, we measured the uptake and stability of methylphenidate (Ritalin (R), a frequently prescribed central nervous system stimulant) and its primary metabolite, ritalinic acid, in (1) water only or (2) with nine-spine stickleback and water louse. Methylphenidate degraded to ritalinic acid in both studies faster at a higher temperature (20 degrees C versus 10 degrees C), with concentrations of ritalinic acid surpassing methylphenidate after 48-100 h, depending on temperature. The concentration of methylphenidate in stickleback was highest at the first sampling point (60 min), while the concentration in water louse tissues reached comparatively higher levels and peaked after similar to 6 days. Neither stickleback nor water louse took up ritalinic acid in tissues despite being present in the water column. Our findings provide valuable data for use in future risk assessment of methylphenidate and will aid in the design of studies aimed at measuring any ecotoxicological effects on, for example, the behaviour or physiology of aquatic organisms

    Alternative reproductive tactics, an overlooked source of life history variation in the invasive round goby

    No full text
    © 2019, Canadian Science Publishing. All rights reserved. Alternative reproductive tactics (ARTs) can generate considerable within-species life history variation but are often overlooked. Here, we use the invasive round goby (Neogobius melanostomus) to address a number of ecological and evolutionary questions about ARTs. Making use of a 12-year, multisite Laurentian Great Lakes data set, we show that the guarder male tactic was twice as common as the sneaker male tactic but that nonreproductive males were the most common morph. The ratio of guarder to sneaker males did not vary spatially despite a wide range of resource densities across sites. Guarders and sneakers spanned similar age ranges, suggesting that the ARTs are nonsequentially expressed. Based on short-term (gut contents) diet analyses, both reproductive tactics consumed fewer types of food and tended to consume fewer items overall when compared with nonreproductive males. Long-term (isotope) diet analyses showed that guarder males fed at a higher trophic level (higher δ15N) and had a broader isotopic niche. Our results show that ARTs are an important aspect of this invasive species’ breeding system and should be accounted for when assessing and managing populations

    Cost-effective pharmaceutical implants in fish : validating the performance of slow-release implants for the antidepressant fluoxetine

    No full text
    Internal, slow-release implants can be an effective way to manipulate animal physiology or deliver a chemical exposure over long periods of time without the need for an exogenous exposure route. Slow-release implants involve dissolving a compound in a lipid-based carrier, which is inserted into the body of an organism. However, the release kinetics of the compound from the implant to body tissues also requires careful validation. We tested and validated a slow-release implant methodology for exposing fish to a pharmaceutical pollutant, fluoxetine. We tested two lipid-based carriers (coconut oil or vegetable shortening) in the common roach (Rutilus rutilus). The implants contained either a high (50 μg/g), low (25 μg/g), or control (0 μg/g) concentration of fluoxetine, and we measured tissue uptake in the brain, muscle, and plasma of implanted fish over 25 days. The two carriers released fluoxetine differently over time: coconut oil released fluoxetine in an accelerating manner (tissue uptake displayed a positive quadratic curvature), whereas vegetable shortening released fluoxetine in a decelerating manner (a negative quadratic curvature). For both carrier types, fluoxetine was measured at the highest concentration in the brain, followed by muscle and plasma. By comparing the implant exposures with waterborne exposures in the published literature, we showed that the implants delivered an internal exposure that would be similar if fish were exposed in surface waters containing effluents. Overall, we showed that slow-release internal implants are an effective method for delivering chronic exposures of fluoxetine over at least 1-month time scales. Internal exposures can be an especially powerful experimental tool when coupled with field-based study designs to assess the impacts of pharmaceutical pollutants in complex natural environments. Environ Toxicol Chem 2023;00:1–10. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC
    corecore