10 research outputs found

    Distribution of extracellular flavins in a coastal marine basin and their relationship to redox gradients and microbial community members

    Get PDF
    The flavins (including flavin mononucleotide (FMN) and riboflavin (RF)) are a class of organic compounds synthesized by organisms to assist in critical redox reactions. While known to be secreted extracellularly by some species in laboratory-based cultures, flavin concentrations are largely unreported in the natural environment. Here, we present pore water and water column profiles of extracellular flavins (FMN and RF) and two degradation products (lumiflavin and lumichrome) from a coastal marine basin in the Southern California Bight alongside ancillary geochemical and 16S rRNA microbial community data. Flavins were detectable at picomolar concentrations in the water column (93–300 pM FMN, 14–40 pM RF) and low nanomolar concentrations in pore waters (250–2070 pM FMN, 11–210 pM RF). Elevated pore water flavin concentrations displayed an increasing trend with sediment depth and were significantly correlated with the total dissolved Fe (negative) and Mn (positive) concentrations. Network analysis revealed a positive relationship between flavins and the relative abundance of Dehalococcoidia and the MSBL9 clade of Planctomycetes, indicating possible secretion by members of these lineages. These results suggest that flavins are a common component of the so-called shared extracellular metabolite pool, especially in anoxic marine sediments where they exist at physiologically relevant concentrations for metal oxide reduction

    Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance

    No full text
    The ability of ecosystems to adapt to environmental perturbations depends on the duration and intensity of change and the overall biological diversity of the system. While studies have indicated that rare microbial taxa may provide a biological reservoir that supports long-term ecosystem stability, how this dynamic population is influenced by environmental parameters remains unclear. In this study, a microbial mat ecosystem located on San Salvador Island, The Bahamas was used as a model to examine how environmental disturbance affects the protein synthesis potential (PSP) of rare and abundant archaeal and bacterial communities and how these changes impact potential biogeochemical processes. This ecosystem experienced a large shift in salinity (230 to 65 g kg-1) during 2011-2012 following the landfall of Hurricane Irene on San Salvador Island. High throughput sequencing and analysis of 16S rRNA and rRNA genes from samples before and after the pulse disturbance showed significant changes in the diversity and PSP of abundant and rare taxa, suggesting overall compositional and functional sensitivity to environmental change. In both archaeal and bacterial communities, while the majority of taxa showed low PSP across conditions, the overall community PSP increased post-disturbance, with significant shifts occurring among abundant and rare taxa across and within phyla. Broadly, following the post-disturbance reduction in salinity, taxa within Halobacteria decreased while those within Crenarchaeota, Thaumarchaeota, Thermoplasmata, Cyanobacteria, and Proteobacteria, increased in abundance and PSP. Quantitative PCR of genes and transcripts involved in nitrogen and sulfur cycling showed concomitant shifts in biogeochemical cycling potential. Post-disturbance conditions increased the expression of genes involved in N-fixation, nitrification, denitrification, and sulfate reduction. Together, our findings show complex community adaptation to environmental change and help elucidate factors connecting disturbance, biodiversity, and ecosystem function that may enhance ecosystem models

    Comprehensive single‐PCR 16S and 18S rRNA community analysis validated with mock communities, and estimation of sequencing bias against 18S

    No full text
    Universal primers for SSU rRNA genes allow profiling of natural communities by simultaneously amplifying templates from Bacteria, Archaea, and Eukaryota in a single PCR reaction. Despite the potential to show relative abundance for all rRNA genes, universal primers are rarely used, due to various concerns including amplicon length variation and its effect on bioinformatic pipelines. We thus developed 16S and 18S rRNA mock communities and a bioinformatic pipeline to validate this approach. Using these mocks, we show that universal primers (515Y/926R) outperformed eukaryote-specific V4 primers in observed versus expected abundance correlations (slope = 0.88 vs. 0.67–0.79), and mock community members with single mismatches to the primer were strongly underestimated (threefold to eightfold). Using field samples, both primers yielded similar 18S beta-diversity patterns (Mantel test, p < 0.001) but differences in relative proportions of many rarer taxa. To test for length biases, we mixed mock communities (16S + 18S) before PCR and found a twofold underestimation of 18S sequences due to sequencing bias. Correcting for the twofold underestimation, we estimate that, in Southern California field samples (1.2–80 μm), there were averages of 35% 18S, 28% chloroplast 16S, and 37% prokaryote 16S rRNA genes. These data demonstrate the potential for universal primers to generate comprehensive microbiome profiles

    Long-term Operation of Microbial Electrosynthesis Systems Improves Acetate Production by Autotrophic Microbiomes

    No full text
    Microbial electrosynthesis is the biocathode-driven production of chemicals from CO<sub>2</sub> and has the promise to be a sustainable, carbon-consuming technology. To date, microbial electrosynthesis of acetate, the first step in order to generate liquid fuels from CO<sub>2</sub>, has been characterized by low rates and yields. To improve performance, a previously established acetogenic biocathode was operated in semi-batch mode at a poised potential of −590 mV vs SHE for over 150 days beyond its initial development. Rates of acetate production reached a maximum of 17.25 mM day<sup>–1</sup> (1.04 g L<sup>–1</sup> d<sup>–1</sup>) with accumulation to 175 mM (10.5 g L<sup>–1</sup>) over 20 days. Hydrogen was also produced at high rates by the biocathode, reaching 100 mM d<sup>–1</sup> (0.2 g L<sup>–1</sup> d<sup>–1</sup>) and a total accumulation of 1164 mM (2.4 g L<sup>–1</sup>) over 20 days. Phylogenetic analysis of the active electrosynthetic microbiome revealed a similar community structure to what was observed during an earlier stage of development of the electroacetogenic microbiome. <i>Acetobacterium</i> spp. dominated the active microbial population on the cathodes. Also prevalent were <i>Sulfurospirillum</i> spp. and an unclassified Rhodobacteraceae. Taken together, these results demonstrate the stability, resilience, and improved performance of electrosynthetic biocathodes following long-term operation. Furthermore, sustained product formation at faster rates by a carbon-capturing microbiome is a key milestone addressed in this study that advances microbial electrosynthesis systems toward commercialization

    Distribution of Extracellular Flavins in a Coastal Marine Basin and Their Relationship to Redox Gradients and Microbial Community Members

    No full text
    The flavins (including flavin mononucleotide (FMN) and riboflavin (RF)) are a class of organic compounds synthesized by organisms to assist in critical redox reactions. While known to be secreted extracellularly by some species in laboratory-based cultures, flavin concentrations are largely unreported in the natural environment. Here, we present pore water and water column profiles of extracellular flavins (FMN and RF) and two degradation products (lumiflavin and lumichrome) from a coastal marine basin in the Southern California Bight alongside ancillary geochemical and 16S rRNA microbial community data. Flavins were detectable at picomolar concentrations in the water column (93–300 pM FMN, 14–40 pM RF) and low nanomolar concentrations in pore waters (250–2070 pM FMN, 11–210 pM RF). Elevated pore water flavin concentrations displayed an increasing trend with sediment depth and were significantly correlated with the total dissolved Fe (negative) and Mn (positive) concentrations. Network analysis revealed a positive relationship between flavins and the relative abundance of Dehalococcoidia and the MSBL9 clade of Planctomycetes, indicating possible secretion by members of these lineages. These results suggest that flavins are a common component of the so-called shared extracellular metabolite pool, especially in anoxic marine sediments where they exist at physiologically relevant concentrations for metal oxide reduction

    Characterization and Quantitation of a Novel β-Lactamase Gene Found in a Wastewater Treatment Facility and the Surrounding Coastal Ecosystem▿

    No full text
    Wastewater treatment plants (WWTPs) are engineered structures that collect, concentrate, and treat human waste, ultimately releasing treated wastewater into local environments. While WWTPs efficiently remove most biosolids, it has been shown that many antibiotics and antibiotic-resistant bacteria can survive the treatment process. To determine how WWTPs influence the concentration and dissemination of antibiotic-resistant genes into the environment, a functional metagenomic approach was used to identify a novel antibiotic resistance gene within a WWTP, and quantitative PCR (qPCR) was used to determine gene copy numbers within the facility and the local coastal ecosystem. From the WWTP metagenomic library, the fosmid insert contained in one highly resistant clone (MIC, ∼416 μg ml−1 ampicillin) was sequenced and annotated, revealing 33 putative genes, including a 927-bp gene that is 42% identical to a functionally characterized β-lactamase from Staphylococcus aureus PC1. Isolation and subcloning of this gene, referred to as blaM-1, conferred ampicillin resistance to its Escherichia coli host. When normalized to volume, qPCR showed increased concentrations of blaM-1 during initial treatment stages but 2-fold-decreased concentrations during the final treatment stage. The concentration ng−1 DNA increased throughout the WWTP process from influent to effluent, suggesting that blaM-1 makes up a significant proportion of the overall genetic material being released into the coastal ecosystem. Average discharge was estimated to be 3.9 × 1014 copies of the blaM-1 gene released daily into this coastal ecosystem. Furthermore, the gene was observed in all sampled coastal water and sediment samples surrounding the facility. Our results suggest that WWTPs may be a pathway for the dissemination of novel antibiotic resistance genes into the environment
    corecore