14,471 research outputs found

    Quaternionic Hyperbolic Function Theory

    Get PDF
    We are studying hyperbolic function theory in the skew-field of quaternions. This theory is connected to k-hyperbolic harmonic functions that are harmonic with respect to the hyperbolic Riemannian metric (Formula Presented) in the upper half space (Formula Presented). In the case k = 2, the metric is the hyperbolic metric of the Poincaré upper half-space. Hempfling and Leutwiler started to study this case and noticed that the quaternionic power function xm(m ε Z), is a conjugate gradient of a 2-hyperbolic harmonic function. They researched polynomial solutions. We find fundamental k-hyperbolic harmonic functions depending only on the hyperbolic distance and x3. Using these functions we are able to verify a Cauchy type integral formula. Earlier these results have been verified for quaternionic functions depending only on reduced variables (x0, x1, x2). Our functions are depending on four variables. © Springer Nature Switzerland AG 2019.Peer reviewe

    Universal distribution of magnetic anisotropy of impurities in ordered and disordered nano-grains

    Full text link
    We examine the distribution of the magnetic anisotropy (MA) experienced by a magnetic impurity embedded in a metallic nano-grain. As an example of a generic magnetic impurity with partially filled dd-shell, we study the case of d1d^{1} impurities imbedded into ordered and disordered Au nano-grains, described in terms of a realistic band structure. Confinement of the electrons induces a magnetic anisotropy that is large, and can be characterized by 5 real parameters, coupling to the quadrupolar moments of the spin. In ordered (spherical) nano-grains, these parameters exhibit symmetrical structures and reflect the symmetry of the underlying lattice, while for disordered grains they are randomly distributed and, - for stronger disorder, - their distribution is found to be characterized by random matrix theory. As a result, the probability of having small magnetic anisotropies KLK_L is suppressed below a characteristic scale ΔE\Delta_E, which we predict to scale with the number of atoms NN as ΔE1/N3/2\Delta_E\sim 1/N^{3/2}. This gives rise to anomalies in the specific heat and the susceptibility at temperatures TΔET\sim \Delta_E and produces distinct structures in the magnetic excitation spectrum of the clusters, that should be possible to detect experimentally

    Conserved Matter Superenergy Currents for Orthogonally Transitive Abelian G2 Isometry Groups

    Full text link
    In a previous paper we showed that the electromagnetic superenergy tensor, the Chevreton tensor, gives rise to a conserved current when there is a hypersurface orthogonal Killing vector present. In addition, the current is proportional to the Killing vector. The aim of this paper is to extend this result to the case when we have a two-parameter Abelian isometry group that acts orthogonally transitive on non-null surfaces. It is shown that for four-dimensional Einstein-Maxwell theory with a source-free electromagnetic field, the corresponding superenergy currents lie in the orbits of the group and are conserved. A similar result is also shown to hold for the trace of the Chevreton tensor and for the Bach tensor, and also in Einstein-Klein-Gordon theory for the superenergy of the scalar field. This links up well with the fact that the Bel tensor has these properties and the possibility of constructing conserved mixed currents between the gravitational field and the matter fields.Comment: 15 page

    Microscopic origin of Heisenberg and non-Heisenberg exchange interactions in ferromagnetic bcc Fe

    Get PDF
    By means of first principles calculations we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the 3d3d orbitals of EgE_g and T2gT_{2g} symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly-interacting impurity levels. We demonstrate that, as a result of this, in Fe the T2gT_{2g} orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the EgE_g states the Heisenberg picture breaks down, since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbour coupling indicates that the interactions among EgE_g states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin.Comment: 5 pages, 4 figure
    corecore