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Abstract We are studying hyperbolic function theory in the skew-field of quater-
nions. This theory is connected to k-hyperbolic harmonic functions that are har-
monic with respect to the hyperbolic Riemannian metric

ds2
k =

dx2
0 +dx2

1 +dx2
2 +dx2

3

xk
3

in the upper half space R4
+ = {(x0,x1,x2,x3) ∈ R4 : x3 > 0}. In the case k = 2,

the metric is the hyperbolic metric of the Poincaré upper half-space. Hempfling
and Leutwiler started to study this case and noticed that the quaternionic power
function xm (m ∈ Z), is a conjugate gradient of a 2-hyperbolic harmonic function.
They researched polynomial solutions. We find fundamental k-hyperbolic harmonic
functions depending only on the hyperbolic distance and x3. Using these functions
we are able to verify a Cauchy type integral formula. Earlier these results have been
verified for quaternionic functions depending only on reduced variables (x0,x1,x2).
Our functions are depending on four variables.

1 Introduction

We study hyperbolic function theory in the skew- field of quaternions, denoted by H.
This theory was initiated by Thomas Hempfling and Heinz Leutwiler in [15]. They
studied quaternion valued twice continuous differentiable functions f (x) defined in
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the full space R4 satisfying the following modified Cauchy-Riemann system

x3

(
∂ f0

∂x0
− ∂ f1

∂x1
− ∂ f2

∂x2
− ∂ f3

∂x3

)
+2 f3 = 0,

∂ f0

∂xi
=− ∂ fi

∂x0
for all i = 1,2,3,

∂ fi

∂x j
=

∂ f j

∂xi
for all i, j = 1,2,3.

In [17] Leutwiler noticed that the power function xm, where m ∈ Z, calculated us-
ing quaternions, is a conjugate gradient of a hyperbolic harmonic function h which
satisfies the equation

∆2h = x2
3∆h−2x3

∂h
∂x3

= 0

where as usual

∆h =
∂ 2h
∂x2

0
+

∂ 2h
∂x2

1
+

∂ 2h
∂x2

2
+

∂ 2h
∂x2

3
.

The operator ∆2 is the hyperbolic Laplace-Beltrami operator with respect to the
Poincaré hyperbolic metric

ds2 =
dx2

0 +dx2
1 +dx2

2 +dx2
3

x2
3

.

These functions are called conjugate gradients of real hyperbolic harmonic func-
tions.

Leutwiler and the first author in [7] studied the total Clifford algebra valued func-
tions, called hypermonogenic functions. Their Cauchy-type formula was proved in
[6] and the key ideas are the relations between k and−k-hypermonogenic functions,
introduced in [3]. An introduction to the theory is given in [18] and in more recent
paper [8].

In this paper, we verify the Cauchy type theorems for quaternionic valued fuc-
tions called k-hyperregular. Our Cauchy type theorems are not directly following
from the theory of quaternionic valued hypermonogenic functions, which are de-
pending only on three variables. Our functions are depending on four variables and
k is an arbitrary real coefficient. However, it is possible to deduce some results from
the theory of paravector valued k-hypermonogenic funcions (see [9]) which domain
of the definition is an open subset of R4 and the values are in the Clifford algebra
C `0,3. These methods are rather complicated in case of quaternions and we prefer
the direct methods.
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2 Preliminaries

The space of quaternions H is four dimensional associative division algebra over
reals with an identity 1 and generated by the elements 1, e1, e2 and e3 satisfying the
relations

e3 = e1e2

and
eie j + e jei =−2δi j1,

where δi j is the usual Kronecker delta. The elements α1 and α may be identified.
We denote the coefficients of the components of a quaternion x with respect to

the base {1,e0,e1,e2} by x0,x1,x2 and x3, that is

x = x0 + x1e1 + x2e2 + x3e3

where x0,x1,x2 and x3 are real numbers. The spaces R4 and H may be identified as
vector spaces.

We denote the upper half space by

H+ = {x | xi ∈ R, i = 0,1,2,3 and x3 > 0}

and the lower half space by

H− = {x | xi ∈ R i = 0,1,2,3 and x3 < 0} .

The hyperbolic distance dh(x,a) between the points x and a in H+ may be computed
from the formula dh(x,a) = arcosh λ (x,a), where

λ (x,a) =
(x0−a0)

2 +(x1−a1)
2 +(x2−a2)

2 + x2
3 +a2

3
2x3a3

=
‖x−a‖2 +‖x−a∗‖2

4x3a3

=
‖x−a‖2

2x3a3
+1 =

‖x−a∗‖2

2x3a3
−1,

putting a∗ = a0 +a1e1 +a2e2−a3e3 and the distance

‖x−a‖=
√
(x0−a0)

2 +(x1−a1)
2 +(x2−a2)

2 +(x3−a3)
2

is the usual Euclidean distance (see the proof for example in [18]). Similarly, we
may compute the hyperbolic distance between the points x and a in H−. Notice that
if both x and a belong to H+ or in H− then

dh (x,a) = dh (x∗,a∗) .
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We recall the following simple calculation rules

‖x−a‖2 = 2x3a3 (λ (x,a)−1) , (1)

‖x−a∗‖2 = 2x3a3 (λ (x,a)+1) , (2)

‖x−a‖2

‖x−a∗‖2 =
λ (x,a)−1
λ (x,a)+1

= tanh2
(

dh (x,a)
2

)
. (3)

We remind that hyperbolic balls are also Euclidean balls with a shifted center
given by the next result.

Proposition 1. The hyperbolic ball Bh (a,rh) with the hyperbolic center a in H+ and
the radius rh is the same as the Euclidean ball with the Euclidean center

ca (rh) = a0 +a1e1 +a2e2 +a3 coshrhe3

and the Euclidean radius re = a3 sinh rh. Conversely, if b = (b0,b1,b2,b3) is a point
in H+ and re < b3 then the Euclidean ball Be (b,re) is the same as the hyperbolic
ball with the hyperbolic radius

rh = artanh
(

re

b3

)
and the hyperbolic center

a =

(
b0,b1,b2,

b3

coshrh

)
.

Corollary 1. The hyperbolic metric in H+ (resp. in H−) is equivalent with the Eu-
clidean metric in H+ (resp. in H−), that is they generate the same topology.

We may extend the hyperbolic topology to the whole space. Indeed, if U ⊂H and
the set U ∩{x ∈H | x3 = 0} is non-empty then we call the set U open if it is open
with respect to usual Euclidean topology. The inner product 〈x,y〉 in H is defined by

〈x,y〉=
3

∑
i=0

xiyi

similarly as in the Euclidean space R4.
The elements

x = x0 + x1e1 + x2e2

are called reduced quaternions if x0,x1and x2 are real numbers. The set of reduced
quaternions is identified with R3.

We recall that the prime involution in H is the mapping x→ x′ defined by

x′ = x0− x1e1− x2e2 + x3e3.

Similarly, the reversion in H is the mapping x→ x∗ defined by
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x∗ = x0 + x1e1 + x2e2− x3e3.

The conjugation in H is the mapping x→ x defined by x = (x′)∗ = (x∗)′, that is

x = x0− x1e1− x2e2− x3e3.

These involutions satisfy the following product rules

(xy)′ = x′y′,

(xy)∗ = y∗x∗

and
xy = y x

for all x,y ∈H.
The prime involution may be characterized also as

xe3 = e3x′

for all quaternions x.
The real part of a quaternion x is defined by

Re x = x0

and the vector part by

Vec x = x1e1 + x2e2 + x3e3.

We recall the product rule
xy =−〈x,y〉+ x× y

if Re x = Re y = 0, where × is the usual cross product in R3.

We define the mappings S : H→ R3 and T : H→ R by

Sa = a0 +a1e1 +a2e2

and
Ta = a3

for a = a0 +a1e1 +a2e2 +a3e3 ∈H. Using the reversion, we compute the formulas

Sa =
1
2
(a+a∗) , (4)

Ta =−1
2
(a−a∗)e3. (5)

We recall the identities
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ab+ba = 2aRe b+2bRe a−2〈a,b〉 (6)

and
1
2
(
abc+ cba

)
= 〈b,c〉a− [a,b,c] (7)

valid for all quaternions a,b and c . The term [a,b,c] is called a triple product and
is defined by

[a,b,c] = 〈a,c〉b−〈a,b〉c.

If a,b and c are quaternions with Re a = Re b = Re c = 0, then (cf. [14])

[a,b,c] = a× (b× c).

3 Hyperregular functions

We use the following hyperbolic modifications H l
k and Hr

k of the Cauchy-Riemann
operators

H l
k f (x) = Dl f (x)+ k

f3

x3
, H l

k f (x) = Dl f (x)− k
f3

x3
,

Hr
k f (x) = Dr f (x)+ k

f3

x3
, Hr

k f (x) = Dr f (x)− k
f3

x3
,

where the parameter k ∈ R and the generalized Cauchy-Riemann operators are de-
fined by

Dl f =
3

∑
i=0

ei
∂ f
∂xi

, Dl f =
3

∑
i=0

ei
∂ f
∂xi

,

Dr f =
3

∑
i=0

∂ f
∂xi

ei, Dr f =
3

∑
i=0

∂ f
∂xi

ei.

We also abbreviate Dl f by D f and H l
k by Hk.

Definition 1. Let Ω ⊂H be open. A function f : Ω → H is called k-hyperregular,
if f ∈ C 1 (Ω) and

H l
k f (x) = Hr

k f (x) = 0.

for any x ∈Ω\{x3 = 0}.

We may simply compute the components of the operators H l
k and Hr

k as follows.

Lemma 1. Let Ω ⊂ H be open. If a function f : Ω → H is differentiable then the
coordinate functions of H l

k and Hr
k are given by
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H l

k f
)

0 =
∂ f0
∂x0
− ∂ f1

∂x1
− ∂ f2

∂x2
− ∂ f3

∂x3
+ k f3

x3
,

(
Hr

k f
)

0 =
(
H l

k f
)

0 ,(
H l

k f
)

1 =
∂ f0
∂x1

+ ∂ f1
∂x0
− ∂ f2

∂x3
+ ∂ f3

∂x2
,

(
Hr

k f
)

1 =
∂ f0
∂x1

+ ∂ f1
∂x0

+ ∂ f2
∂x3
− ∂ f3

∂x2
,(

H l
k f
)

2 =
∂ f0
∂x2

+ ∂ f2
∂x0

+ ∂ f1
∂x3
− ∂ f3

∂x1
,

(
Hr

k f
)

2 =
∂ f0
∂x2

+ ∂ f2
∂x0
− ∂ f1

∂x3
+ ∂ f3

∂x1
,(

H l
k f
)

3 =
∂ f0
∂x3

+ ∂ f3
∂x0
− ∂ f1

∂x2
+ ∂ f2

∂x1
,

(
Hr

k f
)

3 =
∂ f0
∂x3

+ ∂ f3
∂x0

+ ∂ f1
∂x2
− ∂ f2

∂x1
,

where (·) j denotes the real coefficient of the element e j for each j = 0,1,2,3.

We obtain immediately the following result.

Proposition 2. Let Ω ⊂ H be open and a function f : Ω → H continuously differ-
entiable. A function f is k−hyperregular in Ω if and only if

∂ f0
∂x0
− ∂ f1

∂x1
− ∂ f2

∂x2
− ∂ f3

∂x3
+ k f3

x3
= 0, if x3 6= 0,

∂ f0
∂xi

=− ∂ fi
∂x0

for all i = 1,2,3,
∂ fi
∂x j

=
∂ f j
∂xi

for all i, j = 1,2,3.

Our operators are connected to the hyperbolic metric via the hyperbolic Laplace
operator as follows.

Proposition 3. Let f : Ω →H be twice continuously differentiable. Then

H l
kH l

k f =∆ f − k
x3

∂ f
∂x3

+
k f3

x2
3

e3 +
k
x3

(
∂ f1

∂x2
− ∂ f2

∂x1

)
+

k
x3

(
∂ f1

∂x3
− ∂ f3

∂x1

)
e1 +

k
x3

(
∂ f2

∂x3
− ∂ f3

∂x2

)
e2

=H l
kH l

k f

and

Hr
k Hr

k f =∆ f − k
x3

∂ f
∂x3

+
k f3e3

x2
3

+
k
x3

(
∂ f2

∂x1
− ∂ f1

∂x2

)
+

k
x3

(
∂ f1

∂x3
− ∂ f3

∂x1

)
e1 +

k
x3

(
∂ f2

∂x3
− ∂ f3

∂x2

)
e2

=Hr
kHr

k f .

Proof. We just compute

DlH l
k f = DlDl f − k

D f3

x3
+

k f3e3

x2
3

= ∆ f − k
∂ f3
∂x0

+ ∂ f3
∂x1

e1 +
∂ f3
∂x2

e2 +
∂ f3
∂x3

e3

x3
+

k f3e3

x2
3

and
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H l

k f
)

3
=
(
Dl f

)
3 =−

∂ f0

∂x3
+

∂ f1

∂x2
− ∂ f2

∂x1
+

∂ f3

∂x0
.

Hence we obtain

H l
kH l

k f =∆ f − k
x3

∂ f
∂x3

+
k f3

x2
3

e3 +
k
x3

(
∂ f1

∂x2
− ∂ f2

∂x1

)
+

k
x3

(
∂ f1

∂x3
− ∂ f3

∂x1

)
e1 +

k
x3

(
∂ f2

∂x3
− ∂ f3

∂x2

)
e2.

Similarly, we compute

DrHr
k f = DrDr f − k

Dr f3

x3
+

k f3e3

x2
3

= ∆ f − k
∂ f3
∂x0

+ ∂ f3
∂x1

e1 +
∂ f3
∂x2

e2 +
∂ f3
∂x3

e3

x3
+

k f3e3

x2
3

and (
Hr

k f
)

3 =
(
Dr f

)
3 =−

∂ f0

∂x3
− ∂ f1

∂x2
+

∂ f2

∂x1
+

∂ f3

∂x0
.

Hence we have

Hr
k Hr

k f =∆ f − k
x3

∂ f
∂x3

+
k f3e3

x2
3

+
k
x3

(
∂ f2

∂x1
− ∂ f1

∂x2

)
+

k
x3

(
∂ f1

∂x3
− ∂ f3

∂x1

)
e1 +

k
x3

(
∂ f2

∂x3
− ∂ f3

∂x2

)
e2.

Moreover, we easily deduce that H l
kH l

k f = H l
kH l

k f and Hr
kHr

k f = Hr
k Hr

k f .

We immediately obtain two corollaries.

Corollary 2. If f : Ω →H is twice continuously differentiable and k 6= 0 then

H l
kH l

k f = Hr
k Hr

k f = ∆ f − k
x3

∂ f
∂x3

+
k f3e3

x2
3

if and only if ∂ fi
∂x j

=
∂ f j
∂xi

for all i, j = 1,2,3.

Corollary 3. If f : Ω →R is real vakued and twice continuously differentiable then

xk
3H l

kH l
k f = xk

3Hr
k Hr

k f = ∆k f ,

where the operator

∆k = xk
3

(
∆ − k

x3

∂

∂x3

)
is the Laplace-Beltrami operator (see [19]) with respect to the Riemannian metric
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ds2
k =

dx2
0 +dx2

1 +dx2
2 +dx2

3

xk
3

. (8)

Differentiating the first equation of Proposition 2 with respect to xi and applying
the rest of the equations of Proposition 2 we obtain the following result.

Proposition 4. Let Ω ⊂ H be open and a function f : Ω → H twice continuously
differentiable. If f is k-hyperregular then

xk
3H l

kH l
k f = xk

3Hr
k Hr

k f = ∆k f + xk−2
3 k f3e3 = 0.

The previous results motivate the following definition.

Definition 2. Let Ω ⊂ H be open. A twice continuously differentiable function f :
Ω →H is called k-hyperbolic, if

∆ f − k
x3

∂ f
∂x3

+
k f3e3

x2
3

= 0.

There exists a characterization of k-hyperregular functions in terms of k−hyperbolic
functions.

Theorem 1. Let Ω ⊂ H be open. A twice continuously differentiable hyperbolic
harmonic function f : Ω → H is k-hyperregular if and only if the functions f and
x f + f x are k-hyperbolic and H l

k f = Hr
k f .

Proof. In order to abbreviate notations, we denote g = x f + f x. Using the standard
formulas ∆ (x f ) = x∆ f +2Dl f and ∆ ( f x) = (∆ f )x+2Dr f we obtain by virtue of
Proposition 4, that

x2
3∆g− kx3

∂g
∂x3

+ kg3e3 =x2
3xH l

kH l
k f + x2

3

(
H l

kH l
k f
)

x+2x2
3H l

k f +2x2
3Hr

k f

−4kx3 f3− kx3 (e3 f´+ f e3)+2k (x0 f3 + x3 f0)e3+

−2k f3 (x0e3− x3)

=x2
3xH l

kH l
k f + x2

3

(
H l

kH l
k f
)

x

+2x2
3H l

k f +2x2
3Hr

k f .

If f is k-hyperregular then

x2
3H l

kH l
k f = x2

3∆ f − kx3
∂ f
∂x3

+ k f3e3 = 0

and H l
k f = Hr

k f = 0 which implies that g is k−hyperbolic. Conversely, if g and f
are k-hyperbolic and H l

k f = Hr
k f then

H l
k f +Hr

k f = 0.
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Hence f is k-hyperregular.

Real valued k-hyperbolic functions are especially important, since they produce
k-hyperregular functions.

Theorem 2. Let Ω be an open subset of H. If h is real valued k-hyperbolic on Ω then
the function f = Dh is k-hyperregular on Ω . Conversely, if f is k-hyperregular on
Ω , there exists locally a real valued k-hyperbolic function h satisfying f = Dh.

Proof. Let h be real k- hyperbolic on Ω and denote f = Dh. Applying Proposition
3 we obtain

H l
k f = H l

kH l
kh = ∆h− k

x3

∂h
∂x3

= 0 = Hr
k Hr

kh = Hr
k f .

Hence f is k-hyperregular. The converse statement is verified similarly as in [7].

We use the following transformation property proved in [5].

Lemma 2. Let Ω be an open set contained in H+ or in H−. A function f : Ω →
R is k-hyperbolic harmonic if and only if the function g(x) = x

2−k
2

3 f (x) satisfies the
equation

∆2Sg+
1
4

(
9− (k+1)2

)
Sg = 0. (9)

4 Cauchy type integral formulas

We first recall the quaternionic version of the Stokes theorem verified for example
in [14] as follows. If Ω is an open subset of H, K a 3-chain satisfying K ⊂ Ω and
f ,g ∈ C 1 (Ω ,H), then ∫

∂K
gν f dσ =

∫
K
(Drg f +gDl f )dm (10)

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4 identified with H as a vector space.

The T -part and S-part play a strong role in our operator Hk. We have therefore
two versions of the Stokes theorem. The first version deals with T -part and the
second one with S-part.

Theorem 3. Let Ω be an open subset of H\{x3 = 0} and K a 3-chain satisfying
K ⊂Ω . If f ,g ∈ C 1 (Ω ,H), then∫

∂K
gν f dσ =

∫
K

((
Hr
−kg
)

f +gH l
k f +

k
x3

((g3)S f −Sg f3)

)
dm

and therefore
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T
(∫

∂K
gν f dσ

)
=
∫

K
T
((

Hr
−kg
)

f +gH l
k f
)

dm

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4.

Proof. Since Drg = Hr
−kg+ k g3

x3
and Dl f = H l

k f − k f3
x3

we deduce using (10) that

∫
∂K

(gdσ f ) =
∫

K

((
Hr
−kg
)

f +gH l
k f +

k
x3

((g3) f −g f3)

)
dm

=
∫

K

((
Hr
−kg
)

f +gH l
k f +

k
x3

((g3)S f −Sg f3)

)
dm,

completing the proof.

We may also prove

Theorem 4. Let Ω be an open subset of H4\{x3 = 0} and K a 3-chain satisfying
K ⊂Ω . If f ,g ∈ C 1 (Ω ,H), then∫

∂K
f νgdσ =

∫
K

(
(Hr

k f )g+ f H l
−kg+

k
x3

((g3)S f −Sg f3)

)
dm

and therefore

T
(∫

∂K
f νgdσ

)
=
∫

K
T
(
(Hr

k f )g+ f H l
−kg
)

dm,

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4.

Proof. Since Dlg = H l
−kg+ k g3

x3
and Dr f = Hr

k f − k f3
x3

we deduce using (10) that

∫
∂K

(gν f )dσ =
∫

K

(
(Hr f )g+ f H l

−kg+
k
x3

( f g3− f3g)
)

dm

=
∫

K

(
(Hr f ) f +gH l

−kg+
k
x3

((g3)S f −Sg f3)

)
dm,

completing the proof.

Combining previous results we conclude the result

Theorem 5. Let Ω be an open subset of R4\{x3 = 0} and K a 3-chain satisfying
K ⊂Ω . If f ,g ∈ C 1 (Ω ,H), then∫

∂K
T (gν f + f νg)dσ =

∫
K

T
(

Hr
−kg f +gH l

k f +Hr
k f g+ f H l

−kg
)

dm,

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4.
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Theorem 6. Let Ω be an open subset of R4\{x3 = 0} and K a 3-chain satisfying
K ⊂Ω . If f ,g ∈ C 1 (Ω ,H), then∫

∂K
S (gν f + f νg)

dσ

xk
3
=
∫

K
S
(

Hr
k g f +gH l

k f +Hr
k f g+ f H l

kg
) dm

xk
3
,

where ν = ν0 +ν1e1 +ν2e2 +ν3e3 is the outer normal, dσ the surface element and
dm is the usual Lebesgue volume element in R4.

Proof. Applying (10), we deduce∫
∂K

gν f
dσ

xk
3
=
∫

K

(
Drg f +gDl f − k

ge3 f
x3

)
dm
xk

3
.

Since Hr
k g = Drg+

kg3
x3

and H l
k f = Dlg+

k f3
x3

, we infer

∫
∂K

gν f
dσ

xk
3
=
∫

K

(
Hr

k g f +gH l
k f − k

g3 f +g f3 +ge3 f
x3

)
dm
xk

3
.

Using the formula ge3 f = ge3S f −g f3, we obtain∫
∂K

gν f
dσ

xk
3
=
∫

K

(
Hr

k g f +gH l
k f − k

g3 f +ge3S f
x3

)
dm
xk

3

=
∫

K

(
Hr

k g f +gH l
k f − k

g3 f3e3 +Sge3S f
x3

)
dm
xk

3
.

If we compute the coordinates of Sge3S f , we have∫
∂K

gν f
dσ

xk
3
=
∫

K

(
Hr

k g f +gH l
k f − k

g0 f0 +g1 f1 +g2 f2 +g3 f3

x3
e3

)
dm
xk

3

−
∫

K
k

g1 f2−g2 f1 +(g2 f0−g0 f2)e1 +(g0 f1−g1 f0)e2

xk+1
3

dm.

If we interchange the roles of f and g, we infer∫
∂K

f νg
dσ

xk
3
=
∫

K

(
Hr

k f g+ f H l
kg− k

g0 f0 +g1 f1 +g1 f1 +g3 f3

x3
e3

)
dm
xk

3

−
∫

K
k

f1g2− f2g1 +( f2g0− f0g2)e1 +( f0g1− f1g0)e2

xk+1
3

dm

Hence



Quaternionic Hyperbolic Function Theory 13∫
∂K

(gν f + f νg)
dσ

xk
3
=
∫

K

(
Hr

k g f +gH l
k f +Hr

k f g+ f H l
kg
) dm

xk
3

−2ke3

∫
K

g0 f0 +g1 f1 +g1 f1 +g3 f3

x3

dm
xk

3

and therefore∫
∂K

S (gν f + f νg)
dσ

xk
3
=
∫

K
S
(

Hr
k g f +gH l

k f +Hr
k f g+ f H l

kg
) dm

xk
3
.

The hyperbolic Laplace operator of functions depending on λ is computed in [5]
as follows.

Lemma 3. Let x and y be poins in the upper half space. If f is twice continuously
differentiable depending only on λ = λ (x,y), then

∆h f (x) =
(
λ

2−1
) ∂ 2 f

∂λ 2 +4λ
∂ f
∂λ

.

We recall the definition of the associated Legendre function of the second kind

Qµ

ν (λ ) =C
(
λ

2−1
) µ

2 λ
−ν−µ−1

2F1

(
ν +µ +2

2
,

µ +ν +1
2

;
2ν +3

2
;

1
λ 2

)
where

C =−
√

πΓ (ν +µ +1)
2ν+1Γ

(
ν + 3

2

) .

and the hypergeometric function is defined by

2F1 (a,b;c;x) =
∞

∑
m=0

(a)m (b)m
(c)m

xm

m!
,

converging in the usual sense at least for x satisfying |x| < 1. Associated Legendre
functions satisfies the differential equation (see [20])

(λ 2−1)u′′(λ )+2λu′(λ )−
(

ν (ν +1)− µ2

1−λ 2

)
u(λ ) = 0. (11)

We are looking for solutions of the equation

∆h f (λ )+ γ f (λ ) = 0

in the form
f (λ ) =

(
λ

2−1
)α

g(λ ) .

We just compute that
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λ

2−1
)

g′′ (λ )+(4α +4)λg′ (λ )+
(

4α
2 +6α + γ +

2α (2+2α)

λ 2−1

)
g(λ ) = 0.

In order to compute the solutions using Legendre functions, we compare this equa-
tion with (11) and first we set 4α +4 = 2 and therefore α =− 1

2 . Then we have the
equation

(
λ

2−1
)

g′′ (λ )+2λg′ (λ )+
(
−2+ γ− 1

1−λ 2

)
g(λ ) = 0

and again comparing with (11), we obtain equations

ν (ν +1) = 2− γ,

µ
2 =

(n−1)2

4
.

Hence µ =±1 and ν =
√

9−4γ−1
2 . Setting −γ = 1

4

(
(k+1)2−9

)
, we obtain

ν =
±|k+1|−1

2
.

Consequently, we found a solution
(
λ 2−1

)− 1
2 Q1

|k+1|−1
2

(λ ). Note that Q1
|k+1|−1

2
(λ )

is well defined since λ > 1 and |k+1|−1
2 >−1.

Denote ν = |k+1|−1
2 . Applying [20, S.2.9-4.] and the definition of Q1

ν (λ ), we
obtain

Q1
ν (λ ) =−

ν +1
2ν+1

∫
π

0 (λ + cosα)−ν sin2ν+1
α dα

(λ 2−1)
1
2

=−

√
πΓ (ν +2)λ−ν

2F1

(
ν

2 ,
ν+1

2 ; 2ν+3
2 ; 1

λ 2

)
2ν+1Γ

(
ν + 3

2

)
(λ 2−1)

.

We recall that the volume measure of the Riemannian metric dsk defined in (8)
is

dmk = y−2k
3 dm

where dm is the usual Lebesgue measure. Its surface element is defined by dσ(k) =

y
− 3k

2
3 dσ . The outer normal in ∂Bh (x,Rh) is denoted by ne and the outer normal

derivative is defined by ∂u
∂nk = y

k
2
3

∂u
∂ne

.
We prove that the function

Fk (x,y) =−
x

k−2
2

3 y
k−2

2
3 Q1

ν (coshdh (x,y))
ω3 sinhdh (x,y)
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is the fundamental k-hyperbolic harmonic function at the point x (symmetrically y),
that is −∆kFk = δx in the distributional sense with respect to the volume measure of
the Riemannian metric dsk and ω3 = 2π2 is the Euclidean surface area of the unit
ball in H. We also remind that the fundamental k-harmonic function is unique up to
the k-hyperbolic harmonic function.

We first verify the following crucial result.

Lemma 4. Let x be a point in the upper half space and denote ν = |k+1|−1
2 . The

function

gk (dh (x,y)) =
ν +1
2ν+1

∫
π

0
(coshdh (x,y)+ cosα)−ν sin2ν+1

α dα

=

√
πΓ (ν +2)λ−ν

2F1

(
ν

2 ,
ν+1

2 ; 2ν+3
2 ; 1

cosh2 dh(x,y)

)
2ν+1Γ

(
ν + 3

2

)
is positive and continuous for any y ∈H+ and

gk (0) = 1.

Proof. Applying properties of hypergeometric functions (see for example [2]) and
the Gamma function, we infer that

2F1

(
ν

2
,

ν +1
2

;
2ν +3

2
;1
)
=

Γ
(
ν + 3

2

)
Γ (1)

Γ
(

ν+3
2

)
Γ
(

ν+2
2

) = Γ
(
ν + 3

2

)
2ν+1

√
πΓ (ν +2)

.

Hence gk (0) = 1.

Next we prove that Fk (x,y) is integrable in the hyperbolic ball Bh (a,Rh) with
respect to the Riemannian volume measure dmk.

Lemma 5. The function Fk (x,y) is integrable in the hyperbolic ball Bh (x,Rh)with
respect to the volume measure dmk in the hyperbolic ball Bh (x,Rh) and∫

Bh(x,Rh)
Fk (dh (y,x))dmk (y)≤ 2−

3k+4
2 Me

|3k+2|
2 x−k

3 sinh2 Rh,

where M = maxy∈Bh(x,Rh)
(gk (y,x))≥ 1.

Proof. Using Proposition 1 we infer that the hyperbolic ball Bh (x,Rh) is an Euch-
lidean ball with the Euchlidean center cx (Rh) = x0 + x1e1 + x2e2 + x2 coshRh and
the Euchlidean radius Re = x3 sinhRh. Hence we deduce

gk (dh (x,y))
x2

3 sinh2 dh (y,x)
=

gk (dh (x,y))
‖y− cx (Rh)‖2

and in Bh (x,Rh)
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2x3e−Rh = x3 (coshRh− sinhRh)≤ y3 ≤ x3 (coshRh + sinhRh) = 2x3eRh

for all y ∈ Bh (x,Rh). Since gk (dh (x,y)) is a continuous function, it attains its maxi-
mum in the closure of the ball Bh (x,Rh). Since∫

Bh(x,Rh)
x−2

3 sinh−2 dh (y,x)dm(y) =
∫

Be(cx(Rh),x3 sinhRh)

dm(y)
‖y− cx (Rh)‖2

=
∫ x3 sinhRh

0
r
∫

∂Bh(cx(rh),1)
dSdr

=
ω3x2

3 sinh2 Rh

2

we conclude ∫
Bh(x,Rh)

Fk (y,x)dmk (y)≤ 2−
3k+4

2 Me
|3k+2|

2 x−k
3 sinh2 Rh.

We also need the result

Lemma 6. Let Ω ⊂ H+ be open and Bh (x,Rh) ⊂ Ω . Let u be a continuous real
valued function in Ω . Then

lim
Rh→0

∫
∂Bh(x,Rh)

u
∂Fk (x,y)

∂nk dσ(k) (y) =−u(x) .

Proof. Applying Proposition 1 we obtain that the outer normal at y ∈ ∂Bh (x,Rh) is

ne = (n0,n1,n2,n3) =
(y0− x0,y1− x1,y2− x2,y3− x3 coshRh)

x3 sinhRh

In order to abbreviate the notations, we denote briefly rh = dh (y,x). We compute the
outer normal derivative by

∂Fk (x,y)
∂nk =y

k
2
3

∂Fk (x,y)
∂ne

= y
k
2
3 〈ne,gradFk (x,y)〉

=yk−1
3 x

k−2
2

3

∂
gk(rh)

sinh2 rh

∂ rh

3

∑
i=0

ni
∂ rh

∂yi

+
k−2

2
y

k−2
2

3 n3Fk (x,y) .

Since rh = arcosλ (y,x) we deduce

∂ rh

∂yi
=

∂ arccosλ (y,x)
∂yi

=
yi− xi− x3 (coshrh−1)δi3

y3x3 sinhrh

and therefore the identity
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3

∑
i=0

ni
∂ rh

∂yi
=

1
y3

holds. Hence we compute further

∂Fk (x,y)
∂nk =

yk−2
3 x

k−2
2

3

ω3 sinh2 rh

∂gk (rh)

∂ rh
+

k−2
2ω3

yk−2
3 n3Fk (x,y)

−
yk−2

3 x
k−2

2
3 gk (rh)coshrh

ω3 sinh3 rh
.

Since Bh (x,Rh) = B(cx (Rh) ,x3 sinRh) for cx (Rh) = x0 + x1e1 + x2e2 + x2 coshRh
we infer that

lim
Rh→0

x
k−4

2
3

ω3x3
3 sinh3 Rh

∫
∂Bh(x,Rh)

sinhRhyk−2
3

∂gk

∂ rh
(Rh)dσ(k) = 0.

Similarly, we compute that

lim
Rh→0

(k−2)x
k−6

2
3

2ω3x3
3 sinh3 Rh

∫
∂Bh(x,Rh)

yk−2
3 (y3− x3 coshRh)gk (Rh)dσ(k) = 0.

Finally, manipulating the last integral, we obtain

lim
Rh→0

−gk (Rh)coshRh

ω3 sinh3 Rh

∫
∂Bh(x,Rh)

yk−2
3 x

k−2
2

3 dσ(k)

= lim
rh→0
−

x
k+4

2
3 coshRhgk (Rh)

ω3x3
3 sinh3 Rh

∫
∂Bh(x,Rh)

y
− k+4

2
3 dσ

=−u(x) ,

completing the proof.

Theorem 7. Let Ω ⊂ H+ be open and Bh (a,ρ) a hyperbolic ball with a center a
and the hyperbolic radius ρ satisfying Bh (a,ρ) ⊂ Ω . If u is a twice continuously
differentiable functions in Ω and x ∈ Bh (a,ρ) then

u(x) =
∫

∂Bh(a,ρ)

(
Fk (y,x)

∂u(y)
∂nk −u(y)

∂Fk (y,x)
∂nk

)
dσ(k) (y)

−
∫

Bh(a,ρ)
∆ku(y)Fk (y,x)dmk (y) ,

where dmk = y−2k
3 dx, dσ(k) = y

− 3k
2

n dσ and the outer normal ∂u
∂nk = y

k
2
3

∂u
∂ne

.

Proof. Denote Bh (a,ρ) = B and pick a hyperbolic ball such that Bh (x,Rh) ⊂ B.
Denote R = B\Bh (x,Rh). Since Fk is k-hyperbolic harmonic in R, we may apply the
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Green’s formula∫
R
(u∆kv− v∆ku)dmk =

∫
∂R

(
u

∂v
∂nk − v

∂u
∂nk

)
dσ(k)

of the Laplace-Beltrami operator

∆k = xk
3

(
∆ − k

x3

∂

∂x3

)
with respect to the Riemannian metric ds2

k (see [1]) and obtain∫
R

Fk (y,x)∆kudxk =
∫

∂B

(
Fk (y,x)

∂u
∂nk −u

∂Fk (y,x)
∂nk

)
dσ (k)

−
∫

∂Bh(x,Rh)
(Fk (y,x)

∂u
∂nk −u

∂Fk (y,x)
∂nk )dσ(k).

Since ∂u
∂nk and y

− 2k+2
2

3 x
k−2

2
3 gk (dh (x,y)) are bounded we obtain

∫
∂Bh(x,Rh)

|Fk (y,x)
∂u
∂nk |dσ(k) (y)≤

M
sinh2 R

∫
∂Bh(x,Rh)

dσ = M sinhRh

and therefore

lim
Rh→0

∫
∂Bh(x,Rh)

|Fk (y,x)
∂u
∂nk |dσ(k) (y) = 0.

Moreover, since Fk (x,y) is integrable and u is bounded on B we infer∫
Bh(a,ρ)

∆ku(y)Fk (y,x)dmk = lim
Rh→0

∫
Rh

Fk (y,x)∆ku dmk.

Then applying the previous result we conclude the result.

Using the standard methods, we deduce that

φ (x) =−
∫

∆kφ (y)Fk (y,x)dmk

for all φ ∈ C ∞
0 (H+). Hence we have reached our main result.

Theorem 8. Let x and y be poins in the upper half space and denote ν = |k+1|−1
2 .

The fundamental k-hyperbolic harmonic function is
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Fk (x,y) =−
x

k−2
2

3 y
k−2

2
3 Q1

ν (λ (x,y))

2ν+1ω3

(
λ (x,y)2−1

) 1
2

=
(ν +1)x

k−2
2

3 y
k−2

2
3

∫
π

0 (λ (x,y)+ cosα)−ν sin2ν+1
α dα

2ν+1ω3

(
λ (x,y)2−1

)
=

√
πΓ (ν +2)x

k−2
2

3 y
k−2

2 −1
3 λ−ν

2F1

(
ν

2 ,
ν+1

2 ; 2ν+3
2 ; 1

λ 2

)
2ν+1ω3Γ

(
ν + 3

2

)(
λ (x,y)2−1

) .

Corollary 4. Let x and y be points in the upper half-space H+. Then

Fk (x,y) = xk+1
3 yk+1

3 F−k−2 (x,y) .

The previous result follows also from the correspondence principle of Weinstein
(see [21]).

Lemma 7. If we denote

Kk ( f ) = ∆ f − k
x3

∂ f
∂x3

then
Kk ( f ) = xk+1

3 K−k−2

(
x−k−1

3 f
)
.

A kind of fundamental k-hyperbolic harmonic function has also been computed
by GowriSankaram and Singman in [13] using more technical deductions. In order
to compare the results, we first verify the following lemma.

Lemma 8. Let λ > 1 and ν >−1. Then∫
π

0
(λ − cosα)−ν−1 sin2ν+1

α dα = 2ν+1Q0
ν(λ )

and therefore(
λ

2−1
)− 1

2 Q1
ν(λ ) =−(ν +1)2−ν−1

∫
π

0
(λ − cosα)−ν−2 sin2ν+1

α dα

=−2(ν +1)xν+2
2 yν+2

3

∫
π

0

(
‖x− y‖2 +2x3y3 (1− cosα)

)−ν−2
sin2ν+1

α dα.

Proof. Appying [20, S.2.9-4.] and using complex numbers in computations, we ob-
tain

Q0
ν(λ ) = ei(ν+1)π Q0

ν(−λ ) = ei(ν+1)π 2−(ν+1)
∫

π

0
(−λ + cosα)−ν−1 sin2ν+1

α dα

= 2−(ν+1)
∫

π

0
(λ − cosα)−ν−1 sin2ν+1

α dα
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Recalling the known formula

Q1
ν (λ ) =

(
λ

2−1
) 1

2 d
dλ

Q0
ν(λ )

we obtain the first equality. The second one follows from it when we substitute
λ = ‖x−y‖2+2x3y3

2x3y3
.

Theorem 9. Let x and y be poins in the upper half space and denote ν = |k+1|−1
2 .

The fundamental k-hyperbolic harmonic function is

ω3Fk (x,y) =
(ν +1)x

k−2
2

3 y
k−2

2
∫

π

0 (λ − cosα)−ν−2 sin2ν+1
α dα

2ν+1

= 2(ν +1)x
k−2

2 +ν+2
3 y

k−2
2 +ν+2

3

∫
π

0

(
‖x− y‖2 +2x3y3 (1− cosα)

)−ν−2
sin

2ν+1
α dα

=

 − k
∫

π
0 (‖x−y‖2+2x3y3(1−cosα))

k−2
2 sin

−k−1
α dα,

ω3
, if k ≤−1,

(k+2)xk+1
3 yk+1

3
∫

π
0 (‖x−y‖2+2x3y3(1−cosα))

− k+4
2 sin

k+1
α dα

ω3
, if k ≥−1.

We may compute the following special cases.

1. Let k = 0. Then

φ (x,y) =
1

2ω3x3y3

(
1

λ −1
− 1

λ +1

)
1

ω3

(
1

‖x− y‖2 −
1

‖x− y∗‖2

)
2. Let k =−2. Then

F−2 (x,y) =
1

2ω3x2
3y2

3

∫
π

0
(coshdh (x,y)− cosα)−2 sinαdα

=
1

2ω3x2
3y2

3

(
1

λ −1
− 1

λ +1

)
=

1
ω3x2

3y2
3 (λ

2−1)

=
1

2ω3x3y3

(
1

‖x− y‖2 −
1

|x− y∗|2

)
=

4
ω3‖x− y‖2‖x− y∗‖2 .

3. Let k = 2, then
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2ω
−1
3 F2 (x,y) =

∫
π

0
(coshdh (x,y)− cosα)−3 sin3

αdα

=
[
−2−1 (coshdh (x,y)− cosα)−2 sin2

α

]π

0

+
∫

π

0
(coshdh (x,y)− cosα)−2 sinα cosαdα

=−
[
(coshdh (x,y)− cosα)−1 cosα

]π

0

−
∫

π

0
(coshdh (x,y)− cosα)−1 sinαdα

=
1

λ −1
+

1
λ +1

− (log(λ +1)− log(λ −1))

=
2λ

λ 2−1
− log(λ +1)+ log(λ −1) .

Comparing this function with the kernel function computed in [12], we obtain

−
∫ 1

‖a−x‖
‖x−a∗‖

(
1− s2

)2

s3 ds =−
∫ 1

‖a−x‖
‖x−a∗‖

(
s−3−2s−1 + s

)
ds

=
|x−a∗|2

2‖a− x‖2 +2log
‖a− x‖
‖x−a∗‖

− 1
2
‖a− x‖2

‖x−a∗‖2 .

Applying the properties (1) and (2), we infer that

−1
4

∫ 1

‖a−x‖
‖x−a∗‖

(
1− s2

)2

s3 ds =
λ

λ 2−1
− log(λ +1)

2
+

log(λ −1)
2

In order to compute the kernel function for k-hyperregular functions, we need the
following lemma (see [12]).

Lemma 9. If a∈Rn+1
+ and ca (dh (x,a))= a0+a1e1+a2e2+a3 cosh dh (x,a)e3 then

Dx
λ (x,a) =

x− ca (dh (x,a))
x3a3

.

Theorem 10. Denote rh = dh (x,y), t = k −2
2 , ν = |k+1|−1

2 and define as earlier

gk (dh (x,y)) =
|k+1|+1

2ν+2

∫
π

0
(coshdh (x,y)+ cosα)−ν sin2ν+1

α dα.

The k-hyperregular kernel is the function



22 Sirkka-Liisa Eriksson and Heikki Orelma

hk (x,y) = Dx
(Fk (x,y))

=−x
k−2

2
3 y

k−2
2

3

(
tg(rh)e3

2x3 sinh2 rh
+

(
sinhrhg′ (rh)−2g(rh)coshrh

2sinh4 rh

)
x− cy (rh)

x3y3

)

= x
k−2

2
3 y

k+4
2

3 wk (x,y) p(x,y)

= x
k−2

2
3 y

k+4
2

3 p(x,y)vk (x,y)

where

wk (x,y) =−te3gk (rh)
x−Py

y3
+ sinhrhg′k (rh)− (t +2)gk (rh)coshrh

and

p(x,y) =
(x− cy (rh))

−1

2x3‖x− cy (rh)‖2

is 2-hyperregular with respect to x.

Proof. The function Fk (x,y) is k-hyperbolic and therefore the function hk =DxFk (x,y)
is k-hyperregular outside y and y∗. Denoting t = k −2

2 and λ (x,y) = coshrh, we com-
pute as follows

hk (x,y)

x
k−2

2
3 y

k+4
2

3

=− te3g(rh)

2x3y3
3 sinh2 rh

+

(
sinhrhg′ (rh)−2g(rh)coshrh

2y3
3 sinh3 rh

)
Dxrh.

Applying [12] we obtain

Dxrh =
x− cy (rh)

x3y3 sinhrh

and
x3Dxrh

y3
3 sinh3 rh

=
x− cy (rh)

‖x− cy (rh)‖4 =
(x− cy (rh))

−1

‖x− cy (rh)‖2 .

Since

x− cy (rh)

x3y3

(x− cy (rh))
−1

‖x− cy (rh)‖2 =
1

x3y3‖x− cy (rh)‖2

=
1

x3y3
3 sinh2 rh

.

Hence we obtain
hk (x,y)
yt+3

3 xt
3

= wk (x,y)
(x− cy (rh))

−1

2x3‖x− cy (rh)‖2 ,

where

wk (x,y) =−te3gk (rh)
x−Py

y3
+ sinhrhg′k (rh)− (t +2)gk (rh)coshrh.
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Using the similar deductions as in [4] we may prove the formula for S and T -
parts.

Theorem 11. Let Ω and be an open subsets of H+ (or H.−). Assume that K is an
open subset of Ω and K ⊂ Ω is a compact set with the smooth boundary whose
outer unit normal field is denoted by ν . If f is k−hyperregular in Ω and a ∈ K ,
then

S f (a) =−1
2

∫
∂K

S (hk (y,a)ν f (y)+ f (y)νhk (y,a))
dσ

yk
3

=
1
2

∫
∂K

S
[
hk (y,a) ,ν (y), f (y)

] dσ

yk
3
− 1

2

∫
∂K

Shk (y,a)
〈

ν (y), f (y)
〉 dσ

yk
3
.

Proof. Let a ∈ K. Denote R = K\Bh (a,rh) and

A =
∫

∂K
S (hk (y,a)ν f (y)+ f (y)νhk (y,a))

dσ

yk
3
.

Then we obtain

0 =
∫

∂R
S (hk (y,a)ν f (y)+ f (y)νhk (y,a))

dσ

yk
3

= A−
∫

∂Bh(a,rh)
S (hk (y,a)ν (y) f (y)+ f (y)ν (y)hk (y,a))

dσ

yk
3
.

By virtue of Proposition 1, we deduce that

ν (y) =
y− ca (rh)

‖y− ca (rh)‖
.

Hence we obtain

A =− lim
rh

a
k−4

2
3

2ω3‖a− ca (rh)‖3

∫
∂Bh(a,rh)

S (wk (y,a) f (y)+ f (y)vk (y,a))
dσ

y
k−4

2
3

=−2 f (a)

The last formula follows from (7) and the definition of the triple product.

Similarly we may verify the result for the T -part. The main difference is that we
use the surface measure dσ , not y3dσ .

Theorem 12. Let Ω be an open subsets of H+ (or H.−). Assume that K is an open
subset of Ω and K ⊂Ω is a compact set with the smooth boundary whose outer unit
normal field at y is denoted by ν . If f is k−hyperregular in Ω and a ∈ K ,
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T f (a) =−
ak

3
2

∫
∂K

T (h−k (y,a)ν (y) f (y)+ f (y)ν (y)h−k (y,a))dσ

=
ak

3
2

(∫
∂K

T
[
h−k (y,a) ,ν (y), f (y)

]
dσ −

∫
∂K

T h−k (y,a)
〈

ν (y), f (y)
〉

dσ

)
.

5 Conclusion

Our main results produce integral formulas for the T - and S-parts of k-hyperregular
functions. An interesting problem is to research integral operators produced by these
formulas. However, these results requires much computations and therefore they are
left to the consequent publications.
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this job.

References
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