19 research outputs found

    Finite Element Models of Volcano Deformational Systems Having Structural Complexity

    Get PDF
    [spa] El objetivo principal de este trabajo es la construcción de modelos de elementos finitos (FEMs) 3-D con complejidades estructurales con el fin de simular sistemas volcánicos de manera más realista. Como ejemplo de aplicación se ha escogido la caldera de Rabaul, un sistema volcánico cuya dinámica no se comprende por completo. Invirtiendo los datos de InSAR recogidos durante los años 2007-2010, investigamos las fuentes de desplazamiento de la superficie y proporcionamos claves de relevancia sobre el sistema magmático superficial real. Incluyendo características realistas, como la topografía y heterogeneidades mecánicas, usamos las informaciones geofísicas y geológicas para construir modelos de FEMs complejos en 3D. En última instancia, proporcionamos una estrategia para llevar a cabo una inversión lineal basada en una matriz de fuentes que nos permite identificar una distribución de flujo de fluido a través de un volumen de posibles fuentes responsables de los cambios de presión en el medio según lo dictado por los datos, sin imponer a priori una forma de fuente específica y su profundidad. Los resultados permiten generar imágenes de la forma compleja de la fuente que da lugar a la deformación, en el espacio y en el tiempo, sin tener que utilizar ninguna fuente con una forma excesivamente simplificada a priori. Esto lleva el modelado de fuentes un paso adelante hacia modelos más realistas. En el caso de Rabaul, la aplicación de la metodología discutida anteriormente, muestra un sistema magmático superficial formado por dos lóbulos interconectados localizados bajo la caldera y en posiciones diametralmente opuestas. La interconexión y la distribución espacial de las fuentes encuentran correspondencia en la petrología de los productos descritos en literatura y en la dinámica de las erupciones que caracterizan la caldera. Los resultados obtenidos mediante la aplicación del método son satisfactorios y demuestran que la inversión lineal basada en la matriz de fuentes de FE propuesta puede ser considerada adecuada para generar modelos de sistemas magmáticos. Se puede aplicar fácilmente a cualquier volcán, ya que tiene en cuenta la deformación del edificio sin tener que especificar la forma de la fuente de deformación antes de la inversión.[eng] The main focus of this work is to build 3-D FEM models with structural complexities in order to simulate volcanic systems in a more realistic way. We use Rabaul as an example to show the application of the methods and strategies proposed to an active volcano. Rabaul caldera is a volcanic system whose dynamics still need to be understood to effectively predict the behavior of future eruptions. In comparison to the simplified analytic models used so far, more realistic models, such as Finite Elements Models (FEMs), are needed to more accurately explain recent deformation and understand the magmatic system. By inverting InSAR data collected between 2007 and 2010 (using linear inversions based on FEMs), we investigate the sources of surface displacement and provide insights about the actual shallow magmatic system. FEMs are numerical models that let us include realistic features such as topography and mechanical heterogeneities. We provide strategies to use geophysical and geological information to build complex 3-D parts and assemble them into 3-D models. We then compare the effects of different material properties configurations and of different source shapes on the deformational signal and on the strength source estimates (fluid flux or pressure). Ultimately, we provide a strategy for performing a linear inversion based on an array of FEM sources that allows us to identify a distribution of flux of fluid (or change in pressure) over a volume, without imposing an a-priori source shape and depth. We use Rabaul as an example to show the 3-D model’s validity and applicability to active volcanic areas. The methodology is based on generating a library of forward numerical displacement solutions, where each entry is the displacement generated by injecting a mass of fluid of known density and bulk modulus into a source of the array. The sources are simulated as fluid-filled cavities that can accept a specified flux of magma. As the array of sources is an intrinsic geometric aspect of all forward models and the sources are activated one at a time, the domain only needs to be discretized once. This strategy precludes the need for remeshing for each activated source and greatly reduces computational requirements. By using an array of sources, we are not investigating the geometric and pressure parameters of a simplified, unique source with a regular shape. Instead, we are investigating a distribution of flux of fluids over a volume of potential sources responsible for the pressure changes in the medium as dictated by the data. The results allow us to image the complex shape of the deformation source without having to use any a-priori or simplified sources. This takes source modeling a step towards more realistic source models. The application of the methodology to Rabaul shows a shallow magmatic system under the caldera made of two interconnected lobes located at the two opposite sides of the caldera. These lobes are suggested to be the feeding reservoirs of the ongoing Tavuvur volcano eruption, on the eastern side, and of the past Vulcan volcano eruptions, on the western side. The interconnection and spatial distribution of sources find correspondence in the petrography of the products described in literature and in the dynamics of the single and twin eruptions that characterize the caldera. The good results obtained from the application of the method show that the proposed linear inversion based on the FEM array of sources can be considered suitable for generating models of the magmatic system. It can be easily applied to any volcano, because it accounts for volcano deformation without having to specify the shape of the deformation source prior to inversion

    Syn-emplacement fracturing in the sandfell laccolith, eastern iceland—implications for rhyolite intrusion growth and volcanic hazards

    Get PDF
    Field work was funded by Uddeholms travel stipend (Värmlands nation, Uppsala, Sweden), Otterborgs travel stipend and the Swedish Royal Academy of Science (KVA). The research was funded by the Swedish Research Council (VR) grant 2015-03931_VR. ER is funded by the Center of Natural Hazards and Disaster Science (CNDS).Felsic magma commonly pools within shallow mushroom-shaped magmatic intrusions, so-called laccoliths or cryptodomes, which can cause both explosive eruptions and collapse of the volcanic edifice. Deformation during laccolith emplacement is primarily considered to occur in the host rock. However, shallowly emplaced laccoliths (cryptodomes) show extensive internal deformation. While deformation of magma in volcanic conduits is an important process for regulating eruptive behavior, the effects of magma deformation on intrusion emplacement remain largely unexplored. In this study, we investigate the emplacement of the 0.57km3 rhyolitic Sandfell laccolith, Iceland, which formed at a depth of 500m in a single intrusive event. By combining field measurements, 3D modeling, anisotropy of magnetic susceptibility (AMS), microstructural analysis, and FEM modeling we examine deformation in the magma to constrain its influence on intrusion emplacement. Concentric flow bands and S-C fabrics reveal contact-parallel magma flow during the initial stages of laccolith inflation. The magma flow fabric is overprinted by strain-localization bands (SLBs) and more than one third of the volume of the Sandfell laccolith displays concentric intensely fractured layers. A dominantly oblate magmatic fabric in the fractured areas and conjugate geometry of SLBs, and fractures in the fracture layers demonstrate that the magma was deformed by intrusive stresses. This implies that a large volume of magma became viscously stalled and was unable to flow during intrusion. Fine-grained groundmass and vesicle-poor rock adjacent to the fracture layers point to that the interaction between the SLBs and the flow bands at sub-solidus state caused the brittle-failure and triggered decompression degassing and crystallization, which led to rapid viscosity increase in the magma. The extent of syn-emplacement fracturing in the Sandfell laccolith further shows that strain-induced degassing limited the amount of eruptible magma by essentially solidifying the rim of the magma body. Our observations indicate that syn-emplacement changes in rheology, and the associated fracturing of intruding magma not only occur in volcanic conduits, but also play a major role in the emplacement of viscous magma intrusions in the upper kilometer of the crust.Publisher PDFPeer reviewe

    FEM-based linear inverse modeling using a 3D source array to image magma chambers with free geometry. Application to InSAR data from Rabaul Caldera (PNG).

    Get PDF
    This article is subject to a CC Attribution 3.0 License.In this study, we present a method to fully integrate a family of finite element models (FEMs) into the regularized linear inversion of InSAR data collected at Rabaul caldera (PNG) between February 2007 and December 2010. During this period the caldera experienced a long-term steady subsidence that characterized surface movement both inside the caldera and outside, on its western side. The inversion is based on an array of FEM sources in the sense that the Green’s function matrix is a library of forward numerical displacement solutions generated by the sources of an array common to all FEMs. Each entry of the library is the LOS surface displacement generated by injecting a unity mass of fluid, of known density and bulk modulus, into a different source cavity of the array for each FEM. By using FEMs, we are taking advantage of their capability of including topography and heterogeneous distribution of elastic material properties. All FEMs of the family share the same mesh in which only one source is activated at the time by removing the corresponding elements and applying the unity fluid flux. The domain therefore only needs to be discretized once. This precludes remeshing for each activated source, thus reducing computational requirements, often a downside of FEM-based inversions. Without imposing an a-priori source, the method allows us to identify, from a least-squares standpoint, a complex distribution of fluid flux (or change in pressure) with a 3D free geometry within the source array, as dictated by the data. The results of applying the proposed inversion to Rabaul InSAR data show a shallow magmatic system under the caldera made of two interconnected lobes located at the two opposite sides of the caldera. These lobes could be consistent with feeding reservoirs of the ongoing Tavuvur volcano eruption of andesitic products, on the eastern side, and of the past Vulcan volcano eruptions of more evolved materials, on the western side. The interconnection and spatial distribution of sources find correspondence in the petrography of the volcanic products described in literature and in the dynamics of the single and twin eruptions that characterize the caldera. As many other volcanoes, Rabaul caldera is an active and dangerous volcanic system whose dynamics still need to be understood to effectively predict the behavior of future eruptions. The good results obtained from the application of the method to Rabaul caldera show that the proposed linear inversion based on the FEM array of sources is suitable to generate models of magmatic systems. The method can image in space and time the complex free geometry of the source that generates the deformation, widening our understanding of deformational sources and their dynamics. This takes source modeling a step towards more realistic source models.Peer Reviewe

    Evaluating Topographic Effects on Ground Deformation: Insights from Finite Element Modeling

    Get PDF
    © 2015, Springer Science+Business Media Dordrecht. Ground deformation has been demonstrated to be one of the most common signals of volcanic unrest. Although volcanoes are commonly associated with significant topographic relief, most analytical models assume the Earth’s surface as flat. However, it has been confirmed that this approximation can lead to important misinterpretations of the recorded surface deformation data. Here we perform a systematic and quantitative analysis of how topography may influence ground deformation signals generated by a spherical pressure source embedded in an elastic homogeneous media and how these variations correlate with the different topographic parameters characterizing the terrain form (e.g., slope, aspect, curvature). For this, we bring together the results presented in previous published papers and complement them with new axisymmetric and 3D finite element (FE) model results. First, we study, in a parametric way, the influence of a volcanic edifice centered above the pressure source axis. Second, we carry out new 3D FE models simulating the real topography of three different volcanic areas representative of topographic scenarios common in volcanic regions: Rabaul caldera (Papua New Guinea) and the volcanic islands of Tenerife and El Hierro (Canary Islands). The calculated differences are then correlated with a series of topographic parameters. The final aim is to investigate the artifacts that might arise from the use of half-space models at volcanic areas due to diverse topographic features (e.g., collapse caldera structures, prominent central edifices, large landslide scars).This research was partially funded by the European Commission (FP7 Theme: ENV.2011.1.3.3-1; Grant 282759: ‘‘VUELCO’’). AG is grateful for her Juan de la Cierva Grant (JCI-2010- 06092) and her Ramón y Cajal Grant (RYC-2012-11024). The Editor in Chief, Prof Michael J. Rycroft, Giuseppe De Natale and two anonymous reviewers are thanked for their thorough and constructive reviews, which resulted in substantial improvements to this paperPeer Reviewe

    Syn-Emplacement Fracturing in the Sandfell Laccolith, Eastern Iceland—Implications for Rhyolite Intrusion Growth and Volcanic Hazards

    No full text
    Felsic magma commonly pools within shallow mushroom-shaped magmatic intrusions, so-called laccoliths or cryptodomes, which can cause both explosive eruptions and collapse of the volcanic edifice. Deformation during laccolith emplacement is primarily considered to occur in the host rock. However, shallowly emplaced laccoliths (cryptodomes) show extensive internal deformation. While deformation of magma in volcanic conduits is an important process for regulating eruptive behavior, the effects of magma deformation on intrusion emplacement remain largely unexplored. In this study, we investigate the emplacement of the 0.57 km3 rhyolitic Sandfell laccolith, Iceland, which formed at a depth of 500 m in a single intrusive event. By combining field measurements, 3D modeling, anisotropy of magnetic susceptibility (AMS), microstructural analysis, and FEM modeling we examine deformation in the magma to constrain its influence on intrusion emplacement. Concentric flow bands and S-C fabrics reveal contact-parallel magma flow during the initial stages of laccolith inflation. The magma flow fabric is overprinted by strain-localization bands (SLBs) and more than one third of the volume of the Sandfell laccolith displays concentric intensely fractured layers. A dominantly oblate magmatic fabric in the fractured areas and conjugate geometry of SLBs, and fractures in the fracture layers demonstrate that the magma was deformed by intrusive stresses. This implies that a large volume of magma became viscously stalled and was unable to flow during intrusion. Fine-grained groundmass and vesicle-poor rock adjacent to the fracture layers point to that the interaction between the SLBs and the flow bands at sub-solidus state caused the brittle-failure and triggered decompression degassing and crystallization, which led to rapid viscosity increase in the magma. The extent of syn-emplacement fracturing in the Sandfell laccolith further shows that strain-induced degassing limited the amount of eruptible magma by essentially solidifying the rim of the magma body. Our observations indicate that syn-emplacement changes in rheology, and the associated fracturing of intruding magma not only occur in volcanic conduits, but also play a major role in the emplacement of viscous magma intrusions in the upper kilometer of the crust

    Transnational Access to on-site modelling resources and hazard assessment tools: Establishing the pillars of scientific collaboration

    Get PDF
    EGU2020: Sharing Geoscience Online, 4-8 may 2020The Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC) is the largest public multidisciplinary research organization in Spain. The Institute of Earth Sciences Jaume Almera (ICTJA) of Barcelona is one of the main CSIC centres dedicated to Earth Sciences. The Group of Volcanology of Barcelona (GVB), part of Environmental Geology and Geohazards of the ICTJA, has vast experience in numerical and experimental modelling of volcanic and related processes, as well as in the development of hazard assessment and risk management e-tools and methodologies to be applied in active volcanic regions. Within the framework of the EUROVOLC project, the GVB-ICTJA has offered physical access to on-site modelling resources including initial training, guidelines and technical assistance to simulate with the FEM modelling software COMSOL Multiphysics: (i) thermo-fluid dynamic processes occurring during the phases of magma injection, accumulation and cooling and (ii) local and regional stress field of a volcanic area. The on-site access has been complemented with further remote assistance to the users to help finishing their research work. Additionally, the ICTJA has provided on-site access to VOLCANBOX (http://www.volcanbox.eu), an e-tool that integrates, in a systematic and sequential way, a series of well-tested tools addressing various aspects of the volcanic hazard processes and risk assessment. E-tools-computer or Web-based applications can help users employ probabilistic methods to assess and forecast volcanic eruptions and hazards, as well as their spatial and temporal likelihood of occurrence. In the first Transnational Access Call opened by the EUROVOLC project two accesses were funded, one for each offered installation. Thanks to the activities carried out during both accesses, the pillars for future scientific collaboration between the visiting research groups and the GVB-ICTJA have been successfully consolidated.These activities were funded by the EUROVOLC project (Horizon 2020 Grant Agreement: 731070)

    Imaging the complex geometry of a magma reservoir using FEM-based linear inverse modeling of InSAR data: application to Rabaul Caldera, Papua New Guinea

    Get PDF
    We test an innovative inversion scheme using Green's functions from an array of pressure sources embedded in finite-element method (FEM) models to image, without assuming an a-priori geometry, the composite and complex shape of a volcano deformation source. We invert interferometric synthetic aperture radar (InSAR) data to estimate the pressurization and shape of the magma reservoir of Rabaul caldera, Papua New Guinea. The results image the extended shallow magmatic system responsible for a broad and long-term subsidence of the caldera between 2007 February and 2010 December. Elastic FEM solutions are integrated into the regularized linear inversion of InSAR data of volcano surface displacements in order to obtain a 3-D image of the source of deformation. The Green's function matrix is constructed from a library of forward line-of-sight displacement solutions for a grid of cubic elementary deformation sources. Each source is sequentially generated by removing the corresponding cubic elements from a common meshed domain and simulating the injection of a fluid mass flux into the cavity, which results in a pressurization and volumetric change of the fluid-filled cavity. The use of a single mesh for the generation of all FEM models avoids the computationally expensive process of non-linear inversion and remeshing a variable geometry domain. Without assuming an a-priori source geometry other than the configuration of the 3-D grid that generates the library of Green's functions, the geodetic data dictate the geometry of the magma reservoir as a 3-D distribution of pressure (or flux of magma) within the source array. The inversion of InSAR data of Rabaul caldera shows a distribution of interconnected sources forming an amorphous, shallow magmatic system elongated under two opposite sides of the caldera. The marginal areas at the sides of the imaged magmatic system are the possible feeding reservoirs of the ongoing Tavurvur volcano eruption of andesitic products on the east side and of the past Vulcan volcano eruptions of more evolved materials on the west side. The interconnection and spatial distributions of sources correspond to the petrography of the volcanic products described in the literature and to the dynamics of the single and twin eruptions that characterize the caldera. The ability to image the complex geometry of deformation sources in both space and time can improve our ability to monitor active volcanoes, widen our understanding of the dynamics of active volcanic systems and improve the predictions of eruptions.Peer reviewe

    Nonlinear estimation of geometric parameters in FEMs of volcano deformation: Integrating tomography models and geodetic data for Okmok volcano, Alaska

    Get PDF
    The internal structure, loading processes, and effective boundary conditions of a volcano control the deformation observed at the Earth's surface. Using finite element models (FEMs), we simulate the response due to a pressurized magma chamber embedded in a domain having a distribution of elastic material properties. We present the Pinned Mesh Perturbation method (PMP) to automate the mesh generation process in response to perturbations of the position of a simulated magma chamber within an FEM domain. Using InSAR-observed deformation for the 1997 eruption of Okmok volcano, Alaska, as an example, we combine PMP with nested Monte Carlo methods to estimate a set of linear and nonlinear parameters that characterize the depressurization and location of the magma chamber beneath Okmok's caldera. The three-dimensional FEMs used in the PMP method simulate the distribution of material properties of tomography models and account for the irregular geometry of the topography and bathymetry. The estimated depth of an assumed spherical magma chamber is 3527 -54 +55 m below sea level and is sensitive to the distribution of material properties. This depth is consistent with lithostatic pressure constraints and very long period tremor observations. The fit of this FEM to the InSAR data is a significant improvement, at the 95% confidence level, compared to the fit of a corresponding FEM having homogeneous material properties. The methods presented here allow us to construct deformation models that integrate tomography models with geodetic observations, in an effort to achieve a deeper understanding of active volcanoes. Copyright © 2012 by the American Geophysical Union.This work is supported in part by the U.S. Geological Survey Volcano Hazards Program/ARRA awards G10AC00018 and G10AC00039, NSF Geophysics EAR-0943943 and EAR-0943965, National Aeronautics and Space Administration (NASA) under award 10-Earth10F-0200, and a JAE-PREDOC grant from the CSIC.Peer Reviewe
    corecore