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[1] The internal structure, loading processes, and effective boundary conditions of a
volcano control the deformation observed at the Earth’s surface. Using finite element
models (FEMs), we simulate the response due to a pressurized magma chamber embedded
in a domain having a distribution of elastic material properties. We present the Pinned
Mesh Perturbation method (PMP) to automate the mesh generation process in response
to perturbations of the position of a simulated magma chamber within an FEM domain.
Using InSAR-observed deformation for the 1997 eruption of Okmok volcano, Alaska, as
an example, we combine PMP with nested Monte Carlo methods to estimate a set of
linear and nonlinear parameters that characterize the depressurization and location of the
magma chamber beneath Okmok’s caldera. The three-dimensional FEMs used in the
PMP method simulate the distribution of material properties of tomography models and
account for the irregular geometry of the topography and bathymetry. The estimated depth
of an assumed spherical magma chamber is 3527�54

+55 m below sea level and is sensitive
to the distribution of material properties. This depth is consistent with lithostatic pressure
constraints and very long period tremor observations. The fit of this FEM to the InSAR
data is a significant improvement, at the 95% confidence level, compared to the fit of a
corresponding FEM having homogeneous material properties. The methods presented here
allow us to construct deformation models that integrate tomography models with geodetic
observations, in an effort to achieve a deeper understanding of active volcanoes.
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1. Introduction

1.1. Volcano Deformation Models

[2] The migration and storage of magma within an active
volcano produce a deformation signature on the Earth’s sur-
face. The internal structure of a volcano and specific move-
ments of the magma control the details of the deformation
field. Geodetic data can map this deformation and data from a
local array of seismic instruments can image the internal
structure. Numerical models simulate the response due to
magma migration and storage within this internal structure,
thus linking the surface deformation to the movements of
magma at depth. By simulating the magma intrusion —the

impulse— with numerical models, and comparing predicted
to observed deformation —the response, we can quantify
parameters that describe the magma intrusion. Forward
models allow us to predict the surface deformation based
on the specific characteristics of a magma chamber, such
as the location, geometry, and pressure changes in both
space and time. To refine these models, however, we must
solve the inverse problem to estimate (calibrate) char-
acteristic parameters of a magma chamber based on
observed surface deformation (calibration targets). None-
theless, the specific model configuration, a prerequisite for
both forward and inverse analyses, may strongly influence
results and interpretations.
1.1.1. Half-Space Models
[3] Relatively simple analytical solutions for deformation

sources embedded in a homogeneous elastic half-space
(HEHS) are commonly used to simulate observed volcano
deformation because they are computationally inexpensive
and can easily be integrated into inverse analyses that seek to
characterize the geometry, position, and magnitude of a
deformation source. Analytical solutions are available for a
variety of source geometries in HEHS domains (e.g., point
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sources and spheres [McTigue, 1987;Mogi, 1958]; spheroids
[Yang et al., 1988]; and faults, dikes, and sills [Okada, 1992])
to account for corresponding characteristic deformation pat-
terns. Complicated deformation patterns are accounted for by
superposition of multiple deformation sources or variable
source magnitudes over a partitioned source entity [e.g.,
Lundgren and Rosen, 2003; Vasco et al., 2002;Wright et al.,
2006]. However, the reliability of the estimated source
parameters, and thus any resulting interpretations, hinges on
the validity of the underlying assumptions. In particular,
HEHS models imply that the material properties of a volcano
are elastic, the values of the two elastic moduli are spatially
uniform, and the land surface is flat (e.g., negligible topo-
graphic or bathymetric relief).
1.1.2. Beyond Half-Space Models
[4] Finite element models (FEMs) are the only known

type of mathematical model capable of satisfying the elastic
equations over domains with arbitrary geometric configura-
tions and spatially variable material properties. Such models
can simulate pressurized magma chambers (a deformation
source) embedded in domains having a distribution of
material properties and the irregular relief of a volcano. In
spite of their ability to simulate complex deformation sys-
tems, FEMs contain two inherent obstacles to nonlinear
inverse estimations of the parameters describing the location
and geometry of the deformation source. First, the FEM
mesh is geometry-dependent and must be redefined for any
changes to the position or geometry of the deformation
source. Mesh construction requires careful design, testing,
and validation to ensure that the mesh configuration leads to
an acceptable solution. The ability to impose automatic
source parameter perturbations and subsequently reconstruct
an acceptable mesh is critical to advancing nonlinear FEM-
based inverse analyses of volcano deformation [Masterlark
et al., 2006]. Second, computational requirements of FEMs
are much greater than those for analytical solutions. It is
essential to minimize the computational time for an FEM
embedded in an iterative inverse scheme. Ultimately, the
computational performance of the hardware limits the fea-
sibility of embedding FEMs in nonlinear inverse analyses,
because each set of parameter perturbations requires both
re-meshing and a recomputation of an FEM. The aim of
this paper is to demonstrate how FEMs can be embedded
in fully automated nonlinear inverse methods that estimate
the optimal parameters for the horizontal position, depth,
and pressurization of a spherical magma chamber, based
on geodetic data. These methods will satisfy the require-
ment for automated re-meshing that is necessary for itera-
tive perturbations of the parameters that describe the
geometry of the system for computationally feasible three-
dimensional FEMs.

1.2. Study Site: Okmok Volcano, Alaska

1.2.1. Tectonic Setting
[5] The 3,000 km-long Aleutian volcanic arc extends from

Alaska to Kamchatka and hosts more than 40 active volca-
noes [Begét et al., 2005; Finney et al., 2008]. The arc was
built from volcanic and tectonic activity that represents the
surface expression of the subduction of the Pacific Plate
beneath the overriding North American Plate [Fournelle
et al., 1994]. The plate convergence along the arc varies
from 66 mm/yr (orthogonal along the east end of the arc) to

72 mm/yr (trench-parallel along the west end of the arc)
[Cross and Freymueller, 2008]. Umnak Island is located in
the central Aleutian arc and is primarily mafic with an
oceanic crustal basement [House and Jacob, 1983]. The
island is adjacent to a weakly coupled portion of the plate
boundary and GPS data indicate that the tectonic strain rate
across Umnak Island is less than 100 nanostrain/yr [Cross
and Freymueller, 2008].
[6] Umnak Island includes two volcanic lobes aligned

with the trench and separated by an isthmus. Okmok volcano
(Figure 1), which occupies the northeast lobe of Umnak
Island, is one of the largest volcanic shields of the Aleutian
arc [Burgisser, 2005; Larsen et al., 2007]. A central caldera,
having a radius of 5 km, dominates the physiography of
Okmok volcano. The rim of this caldera has an elevation
of about 900 m above sea level (asl) and the elevation of the
caldera floor is about 400 m asl. The existing caldera is the
result of two separate caldera-forming eruptions, for which
radiogenic measurements indicate ages of 12,000 and 2,050
years [Finney et al., 2008; Larsen et al., 2007]. Post-caldera
eruptions, which generally emanate from intracaldera cones,
are effusive and basaltic [Burgisser, 2005]. The most recent
eruption in 2008 originated from several new vents sur-
rounding Cone D near the eastern rim of the caldera, while
the three previous eruptions in 1945, 1958, and 1997 origi-
nated from Cone A near the southwest rim of the caldera
[Larsen et al., 2009] (Figure 1). Geochemical analyses of
erupted materials are consistent with primitive magma from
depth and brief storage in shallow reservoirs [Finney et al.,
2008]. Over the past decade, Okmok was instrumented
with GPS instruments [Fournier et al., 2009; Miyagi et al.,
2004] and seismic networks [Caplan-Auerbach et al., 2004;
Haney, 2010; Johnson et al., 2010; Masterlark et al., 2010].
Remote sensing data remain essential for monitoring Okmok,
due to the relatively remote location of the volcano [Dehn
et al., 2000; Lu et al., 2003; Lu, 2007; Patrick et al., 2004].
[7] The deformation associated with the 1997 eruption of

Okmok is used to demonstrate the techniques developed in
this study. This eruption began on 11 February 1997 with
steam and ash plumes and progressed to a moderate Strom-
bolian eruption, producing explosive ash plumes and lava
flows emanating from Cone A that flowed toward the center
of the caldera (Figure 1) [Miller et al., 1998]. Thermal
anomalies in Okmok caldera were observed with Advanced
Very High Resolution Radiometer (AVHRR) imagery dur-
ing February and March 1997 [Dehn et al., 2000; Patrick
et al., 2004]. The eruption ended 23 May 1997 [McGimsey
and Wallace, 1999], giving a total eruption interval of 101
days. Based on interferometric synthetic aperture radar
(InSAR) measurements, the net volume of the 1997 lava
flow is 0.154 � 0.025 km3 and has a maximum thickness
of 50 m [Lu et al., 2003].
1.2.2. Data
[8] The available data are separated into two categories,

based on usage from a modeling perspective. Constraining
data are treated as a priori information and are built into
the models. Calibration targets (data) are used to estimate
the calibration (or adjustable) parameters. For this study,
topography and bathymetry constrain the geometry of the
free surface and ambient noise tomography and regional
velocity models constrain the distribution of material
properties within the model domain. InSAR data serve as
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calibration targets, which are used in inverse methods to
calibrate parameters describing the position and pressuriza-
tion of a deformation source.
[9] Lu et al. [2003] used synthetic aperture radar to

develop a digital elevation model (DEM) for the entire
northeast lobe of Umnak Island that is occupied by Okmok.
The original DEM had a pixel resolution of 5 m and vertical
uncertainty of 10 m. This DEM was re-sampled to corre-
spond to the 40-m pixel resolution of the InSAR image
described below (Figure 1). We supplement this DEM with
coarse-resolution (1-min) topography and bathymetry data
available from the NOAA National Geophysical Data Center
(http://www.ngdc.noaa.gov) to develop a DEM describing
the geometry of the Earth’s surface for both onshore and
offshore regions of the model domain.
[10] Ambient noise tomography (ANT) reveals a complex

internal structure for Okmok volcano (Figure 1b) and
Masterlark et al. [2010] provide a detailed analysis. In par-
ticular, ANT indicates two low velocity zones (LVZs). The
shallow LVZ fills the caldera from the land surface to about
1000 m below sea level (bsl). A deeper LVZ suggests the
presence of a magma chamber having a center at a depth of
about 4000 m bsl. It will be shown that the shallow LVZ

strongly influences the estimated depth of the magma
chamber, while the deep LVZ verifies the estimated depth
of the magma chamber.
[11] For our analysis, we use InSAR data with image-pair

acquisition dates of 9 October 1995 and 9 September 1997,
which span the 1997 eruption of Okmok volcano (Image ID
66 from Lu et al. [2005]). An overview of the InSAR data is
given here and summarized in Table 1. Details of the InSAR
processing are given by Lu et al. [2005]. The InSAR data
map the volcano-wide deflation of Okmok (Figure 1c). The
average line-of-sight vector is L = [0.346, �0.081, 0.935].
The deformation pattern is strongly symmetric about a ver-
tical axis centered on the caldera and has a maximum line-
of-sight displacement of about �1.4 m. Several studies
confirm that a spherical deformation source beneath the
center of the caldera, which predicts radially symmetric
deformation, well fits the InSAR data [Lu et al., 2000, 2005;
Mann et al., 2002; Masterlark, 2007; Masterlark et al.,
2010], although we note that these results are non-unique.
[12] We ignore deformation between the initial SAR

image acquisition date (9 October 1995) and the beginning
of the 1997 eruption (11 February 1997). If we assume the
magma supply is a linear function of the pressure gradient

Figure 1. Okmok volcano, Alaska. (a) Physiography. The black region in the caldera is the footprint of
the lava flow from the 1997 eruption [Lu et al., 2003]. The white dashed line is the caldera rim. The small
white circle at the center of the caldera shows the initial estimated location of the deformation source. Inset
at bottom right shows the location of Okmok in the Aleutian Arc. (b) Internal structure determined from
ambient noise tomography (ANT) [Masterlark et al., 2010]. The shear wave distribution is shown for the
depth indicated in the bottom of each plot. (c) Unwrapped InSAR data for the 1997 eruption.
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between a deep magma source with constant pressure and the
shallow magma chamber, then the pre-eruption magma flux
into the chamber diminishes with the pressure gradient
between the shallow magma chamber and deep magma
source [Dvorak and Okamura, 1987; Turcotte and Schubert,
2002]. InSAR data confirm that magma intrusion into a
shallow chamber was negligible during 1995–1996 [Lu et al.,
2005]. Furthermore, we assume that the deformation between
the end of the 1997 eruption (23 May 1997) and the acqui-
sition of the second SAR image (9 September 1997) is
minimal. Masterlark et al. [2010] suggested that the defor-
mation during this post-eruption interval is due to viscoe-
lastic relaxation and represents about 10% of the total signal.
Because a primary focus of this study is to identify the
position of the deformation source rather than the temporal
behavior of the source strength, we restrict our analysis to
elastic models and assume a static pressurization of the
magma chamber during the interval spanned by the InSAR
image pair.
[13] We use the deformation data associated with 1997

eruption of Okmok volcano for two reasons. First, the
InSAR data have a high signal-to-noise ratio and the overall
pattern of deformation is well predicted by relatively simple
models simulating pressurization of a spherical deformation
source. Second, the InSAR data from the 1997 eruption are
well studied. No fewer than five published studies estimated
deformation source parameters for the 1997 eruption of
Okmok using InSAR [Lu et al., 2000, 2005; Mann et al.,
2002; Masterlark, 2007; Masterlark et al., 2010]. By using
the same deformation (InSAR) data, we can compare results
and interpretations from this study, with its relatively
sophisticated model configurations, to results and inter-
pretations from earlier studies that were based on simple
HEHS models. Such comparisons reveal variations in results
and interpretations that are directly attributed to the specific
configuration of a given deformation model.
[14] The remainder of this paper comprises three sections

that are structured to follow a deformation modeling proto-
col [Masterlark and Hughes, 2008]. First, in the Methods
section, we describe the configuration, construction, and
validation of the FEMs. This section goes on to describe
the implementation of a parameter optimization method
that allows for automated FEM re-builds for the nonlinear
parameters. Second, we present results of the parameter

optimization for FEMs that simulate the complex internal
structure of the volcano, as well as for FEMs that simulate a
uniform internal structure. We compare model predictions to
observations that are independent of the calibration process
to verify the model. Third, we discuss comparisons of results
from alternative FEM configurations in this analysis, as well
as results from previous analyses. Finally, we present con-
clusions and recommendations.

2. Methods

2.1. Deformation Models

[15] The active magmatic system of Okmok likely includes
a temperature-dependent rheologic structure, a system of
hydrothermal fluids, and a complex internal assembly of lava
and pyroclastic flows and intrusive magma bodies [Finney
et al., 2008; Masterlark et al., 2010; Walker, 1993], all of
which translate to localized weaknesses in the crust. Fur-
thermore, the topographic relief of Okmok volcano invali-
dates the flat land surface assumption of HEHS models. It is
well known that the HEHS assumptions can strongly influ-
ence both source parameter estimations and forward model
predictions for deformation and stress in volcanic deforma-
tion systems [e.g., Masterlark et al., 2010, and references
therein]. Accordingly, we conclude that the HEHS assump-
tions poorly approximate Okmok volcano and we turn,
instead, to the flexibility of FEMs to simulate the deforma-
tion of Okmok volcano.
2.1.1. FEM Method
[16] We construct FEMs to simulate the deformation of

Okmok volcano resulting from pressurization of a magma
chamber embedded in an elastic model domain. We use the
resulting FEM predictions to estimate the four parameters
that best describe the position and change in pressure of the
magma chamber. All FEMs in this analysis are constructed
using Abaqus (version 6.9-EF, Dassault Systèmes Simulia
Corp., Providence, Rhode Island, 2009, available at http://
www.simulia.com). Expressed in index notation, the gov-
erning equations for a three-dimensional elastic domain
having spatially variable (heterogeneous) material properties
are:

∂
∂xi

2G
∂ui
∂xi

þ �

1� 2�
r⋅u

� �� �
þ ∂
∂xj

G
∂ui
∂xj

þ ∂uj
∂xi

� �� �
¼ 0 ð1Þ

where u is displacement, G is the shear modulus, and u
is Poisson’s ratio. The subscripts i and j span orthogonal
direction components 1, 2, and 3, and i ≠ j. If the
material properties are homogeneous over the domain, then
equation (1) reduces to the Navier equations [Sadd, 2010]. In
this formulation, x1, x2, and x3 are equivalent to Cartesian
coordinates x, y, and z (easting, northing, and vertical),
respectively. Similarly, u1, u2, and u3 are equivalent to ux, uy,
and uz, respectively. Coordinate positions are given in Uni-
versal Transverse Mercator (UTM) projection with respect to
an origin defined as the center of the caldera and zero m asl
(Table 2).
[17] The model domain configuration is given in Figure 2

and summarized in Table 2. The three-dimensional model
domain approximates a solid hemisphere centered on the
caldera and having a radius of 60 km. The outer surface of

Table 1. InSAR Data Summary

Aspect Specifications

Image 1 ERS-1/Orbit 22147/09 October 1995
Image 2 ERS-2/Orbit 12494/09 September

1997
Wavelength C-band/0.0283 m
Track 115
Pass descending
Baseline 8 m
L (line-of-sight), [east,north,up] [0.346, �0.081, 0.935]
Columns 1100
Rows 980
Pixel dimensions 40 m � 40 m
N (coherent pixels) 115,550
Reference position (top-left

corner of image)
UTM zone 2, Easting 670080 m,

Northing 5940915 m
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the hemisphere represents the far-field lateral and depth
extent of the domain. The top of the domain has a geometry
that represents the topography of the land surface and
bathymetry of the seafloor. The domain includes a partition
for a subcaldera core, which houses the simulated magma
chamber. This cylindrical core has a diameter of 8000 m and
a height of 9000 m (from z = �9000 m to z = 0 m) plus the
additional height associated with topography (Figure 2). The
magma chamber is simulated as a pressurized spherical

cavity with a radius of 1000 m. We do not imply that the
actual magma chamber in Okmok is a spherical cavity.
Instead, we recognize that the magma chamber of Okmok
is most likely a complex assembly of various conduits and
reservoirs whose net behavior as a deformation source is
well approximated by a pressurized sphere. The entire
domain is tessellated into first order tetrahedral elements.
Characteristic lengths of elements are about 175 m near the
magma chamber and gradually increase to characteristic
lengths of about 8000 m near the far-field boundaries. Initial
conditions are static equilibrium. We assume that the far-
field surfaces of the model domain are sufficiently far away
from the caldera such that displacements vanish and we
specify zero displacement boundary conditions along these
surfaces. This assumption is validated later. The top of the
model domain, representing the land surface and seafloor,
is a stress-free surface. The impulse change in pressure along
the walls of the magma chamber is DP0. Because this is
an elastic system, the deformation throughout the domain
is a linear function of DP0.
2.1.2. Pinned Mesh Perturbation
[18] The Pinned Mesh Perturbation (PMP) method

employs a reduced basis [Huebner et al., 2001] that uses an
auxiliary FEM to generate geometric perturbations to an
initial mesh. Strategic geometric features of this mesh are
subject to a combination of both zero displacement (pinned)
and nonzero displacement (perturbation) specifications. The
auxiliary FEM satisfies equation (1) for the imposed bound-
ary conditions, thereby distributing the mesh distortion over
the domain. We use PMP to generate the complex geometry
of topographic and bathymetric relief for the free surface,
as well as to automate the re-meshing process necessary to
perturb the position of the magma chamber. Automatic re-
meshing is required in any iterative scheme that estimates
parameters related to variable nodal positions.
[19] We implement the PMP method for Abaqus using a

four-step process. First, we construct an initial domain geo-
metry and mesh for an elastic FEM. This initial configura-
tion must be carefully designed to accommodate the desired
distortions, while simultaneously maintaining a valid mesh.
Second, we specify displacements as boundary conditions to
preserve the general shape of the domain and achieve the
desired geometric perturbation from the initial configuration.
Nodal displacements for the entire mesh are calculated for an
elastic material in response to the specified displacements.
Third, the nodal positions for the initial mesh are adjusted by
these calculated displacements (design vectors) to form a
new mesh having the desired geometry [Huebner et al.,
2001]:

N ¼ N0 þ U ð2Þ

where N0 and N are matrices of nodal definitions for the
initial and final FEM meshes, respectively, and U is a matrix
of design vectors (Figure 3). The ith rows in N0, N, and U
are [(node name)i, xi, yi, zi], [(node name)i, xi, yi, zi], and
[0, ux,i, uy,i, uz,i], respectively. Each node in Abaqus is
identified by a unique integer from 1 to 999999999 (the
node name). Note that in this formulation, the null element
in U preserves the node name given in N0, while the nodal
coordinates for a given node name may vary. Because

Table 2. FEM Configuration

Aspect Specifications

Domain space origin x = 0 at UTM zone 2
Easting 690719 m,
y = 0 at UTM zone
2 Northing 5923980 m,
z = 0 at mean sea level

S0 [0, 0, �3000 m]
VAL
Analysis type elastic
Elements (1st order tetrahedra) 76,606
Nodes 13,870
Total FEM variables 41,610
Maximum domain depth 60 km
Maximum domain radius 60 km
Chamber radius (rS) 1000 m
Radius of effective sphere (rSeff ) 995.930 m
Volume of effective sphere 4.137853 � 109 m3

G 20 GPa
u 0.25
DP 50 MPa
Far-field boundary conditions zero displacement
Top of model domain free surface, flat

HET and HOM
Analysis type elastic
Elements (1st order tetrahedra) 86,875
Nodes 15,722
Total FEM variables 47,166
Maximum domain depth 60 km
Maximum domain radius 60 km
Chamber radius (rS) 1000 m
Radius of effective sphere (rSeff ) 995.16 m
DP0 10 MPa
Far-field boundary conditions zero displacement
Top of model domain free surface (topography)

Unique to HET
Chamber volume (V) 4.128291 � 109 m3

E distribution (Figure 2c)
u (other than LVZ) 0.29
u (LVZ) 0.15

Unique to HOM
Chamber volume (V) 4.128264 � 109 m3

E 5.0 � 1010 Pa
u 0.25

Auxiliary FEM
Analysis type r2E = 0
Mesh same as HET
Internal boundary

conditions
interpolated from seismic
tomography

Far field boundary
conditions

interpolated from layered
Vs model.

CORE
Analysis type elastic
Elements (1st order tetrahedra) 34,058
Nodes 6,397
Total FEM variables 19,191
Domain height �9 km
Domain radius 8 km
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element geometry in Abaqus is defined in terms of invariant
node names, the method efficiently re-meshes the model
domain with each perturbation. Fourth, the elements in the
resulting mesh are tested for quality.
[20] We first apply PMP to account for the irregular sur-

face associated with topography and bathymetry. We con-
struct a prototype configuration that has the geometric
components of the FEM configuration discussed above, but
having a flat free surface with an additional first-order
approximation of the caldera rim to reduce anticipated dis-
tortion of the important geometric features. We then apply
appropriate boundary conditions to preserve certain geo-
metric features, such as the spherical cavity and the walls

and floor of the subcaldera core, while simultaneously per-
turbing the geometry of the free surface according to the
difference between the prototype free surface configuration
and the DEM. We then calculate nodal displacements over
the domain and adjust the nodal positions using equation (2).
This process defines a mesh that includes a spherical cavity
embedded in a subcaldera core that is in turn embedded in a
domain having a top surface with the irregular geometry of
the topographic and bathymetric relief. We will use this
mesh for an FEM configuration called HET (Figure 2b).
Although a previous study indicated that the effects of
topography and bathymetry on deformation predictions are
not important for Okmok volcano [Masterlark, 2007], the
PMP method will be useful for constructing deformation
models for other Alaskan volcanoes that have substantial
topographic relief, such as Augustine or Redoubt.
[21] Our second application of PMP imposes the three-

dimensional perturbations to the position of a pressurized
spherical cavity that represents the magma chamber. This
implementation is embedded in a fully automated Monte
Carlo optimization algorithm that estimates the position
and pressurization parameters that minimize the misfit
between model predictions and InSAR data. The pre-
dicted deformation is a nonlinear function of the three-
component vector S, which describes the position of the
magma chamber.
[22] We construct an auxiliary FEM of the subcaldera

core (defined as CORE, Figure 2d) by duplicating the sub-
caldera core partition from the mesh of HET. The outer
surfaces of CORE have zero displacement boundary con-
ditions. All nodes of the spherical cavity that represents the
magma chamber have specified displacements correspond-
ing to a three-component perturbation vector. The nodal
displacements over the domain satisfy the elastic governing
equation (1). Nodal positions for the perturbed mesh are
calculated from equation (2) and the resulting mesh is
inserted into HET.
[23] The PMP method allows us to change the position of

the chamber in an FEM by specifying a parameterized three-
component perturbation vector. However, if we change the
position too much, then the mesh will become overly dis-
torted. Because the surface area of the simulated magma
chamber is much smaller than the surface area of the core

Figure 2. Domain configurations, as summarized in
Table 2. (a) VAL. The model domain is a solid hemisphere
with a diameter of 120 km. The flat top of the domain is a
free surface. The curved lateral and depth boundary condi-
tions are set to zero displacement (pinned). A pressure load
is applied to an internal spherical cavity. This configuration
is designed to simulate Mogi [1958]. (b) Configuration com-
mon to HET and HOM. Onshore regions are shaded darker
than offshore regions and outlined with the coastline for
reference. The exploded view of the subcaldera core reveals
the initial estimated position of the magma chamber. (c)
Three-dimensional distribution of material properties, shown
in exploded view. Onshore regions are shaded darker than
offshore regions and outlined with the coastline for refer-
ence. (d) CORE. (left) The outer surfaces of the domain have
pinned boundary conditions. (right) An exploded view of the
domain reveals the magma chamber and mesh. The nodes
comprising the chamber have specified displacements.
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boundary, distortion is undesirably focused near the cham-
ber. One way to better distribute the distortion throughout
the core is to specify a series of shells surrounding the
chamber, where the shells near the chamber are relatively
stiff. From a mechanical standpoint, this configuration
reduces the effective curvature of the spherical magma
chamber and smoothes the mesh distortion resulting from
perturbing the position of the magma chamber. More spe-
cifically, the Young’s modulus, E, decreases linearly from a
maximum, E1, in the shell surrounding the magma to a
minimum, E0, for the elements furthest from the magma
chamber (Figure 4).
[24] All FEMs presented here are comprised of first-order

tetrahedral elements. Each tetrahedral element is defined by
four nodes that occupy the vertices and are connected by six
sides. A tetrahedral quality criterion, q, measures the devia-
tion from an ideal regular tetrahedron:

q ¼ q * VT

X6
i¼1

l2i

 !�1:5

ð3Þ

where q* normalizes the quality criterion to range from 0
(poor) to 1.0 (regular tetrahedron), VT is the volume of the
tetrahedron, and l is the length of a tetrahedral edge [Zuo
et al., 2005; Press et al., 2007]. This particular formulation
for tetrahedron quality is both robust and computationally

inexpensive [Parthasarathy et al., 1994]. We use the PMP
method to simulate the maximum range of allowable per-
turbations to the position of the chamber and evaluate the
distortion of the tetrahedra as a function of E1/E0 (Figure 5).
The distortion is minimized for E1/E0 > 20 and we use
E1/E0 = 100 for the remainder of this analysis. That is, the
elements closest to the magma chamber have a stiffness
that is 100 times greater than the stiffness of elements
furthest from the magma chamber and the variation
between these limits is linear. To be clear, this configura-
tion applies only to CORE, which perturbs the magma
chamber position via PMP. While the resulting mesh
(without material properties) from CORE is inserted into
HET, the material properties for this inserted mesh are
determined for HET as described below.
[25] Because we are simulating an elastic deformational

system, each element in the model domain requires specifi-
cations for two elastic moduli. We use Young’s modulus and
Poisson’s ratio out of convenience, because these are the two
parameters that Abaqus requires for each elastic element.
The relationship between Young’s modulus and shear wave
velocity, Vs, is:

E ¼ 2r 1þ �ð ÞV 2
s ð4Þ

where r is density [Jaeger et al., 2007]. This relationship
between the static E and dynamic Vs is valid for depths
greater than a few kilometers [Simmons and Brace, 1965].

Figure 3. Pinned mesh perturbation (PMP). This two-dimensional schematic illustrates the principles of
PMP. (a) Initial FEMmesh. The gray mesh is part of an FEM that simulates elastic plane strain. Filled gray
circles are nodes with corresponding numeric names. Each element has a numeric name, shown here as a
circled number. The geometry of each triangular element is defined by the position coordinates of three
nodes. (b) Mesh perturbation. The mesh deforms in response to a specified displacement (dashed vector)
applied to node 2 and zero displacement (pinned) boundary conditions along the sides and bottom of the
domain. This deformation satisfies equation (1). Gray circles are initial nodal positions (N0). Black circles
are final nodal positions (N). Black arrows are design vectors (U) that specify alterations to nodal positions
over the mesh. An example of the relationship among the initial and final nodal positions and the design
vector is labeled for node 3. (c) Final mesh. The distortion caused by the specified displacement of node 2
is distributed throughout the mesh. Element definitions, given as n-tuples of node names, are preserved,
although the node positions may vary. This preservation of element definitions, while simultaneously
allowing for element distortions, is the essence of PMP.
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Because Vs is squared, variations in Vs will dominate over
other variables that contribute to estimations of E. We
assume constant representative values of n and r for oceanic
crust, where u = 0.29 and r = 2900 kg/m3, for the bulk of the
domain [Christensen and Mooney, 1995; Christensen,
1996]. The shallow LVZ within the caldera includes speci-
fications u = 0.15 and r = 2400, to account for the relatively
weak and fluid-saturated materials [Wang, 2000] suggested
by previous studies [Johnson et al., 2010; Larsen et al.,
2009; Lu et al., 2005; Masterlark, 2007; Masterlark et al.,
2010].
[26] We specify values for E over the model domain

based on the Vs model derived from ANT for Okmok
(Figure 1b) [Masterlark et al., 2010] using Laplacian
interpolation [Press et al., 2007]. First, we convert Vs to E
using equation (4). Then, we construct an auxiliary FEM
(Table 2), to satisfy the Laplacian r2E = 0 using the same
(unperturbed) mesh from HET. We assign values for E to a
subset of nodes (internal boundary conditions), according to
the nearest-neighbor analysis of the E distribution converted
from the Vs tomography model. Far-field boundary condi-
tions for E are specified according to the distribution con-
verted from the initial layered Vs structure [Masterlark et al.,
2010]. The auxiliary FEM then solves the Laplace equation
for E over the model domain and we extract the solution for

element centroid positions. This produces a distribution of
E that precisely corresponds to the element centroid posi-
tions in the mesh of HET (Figure 2c). It is trivial to transfer
the material properties determined with the auxiliary FEM
to HET, because the meshes defined for both of these
models are identical. HET is now configured to simulate a
pressurized sphere embedded in a model domain having a
distribution of material properties estimated from ANT and
a free surface having the irregular geometry of topographic
and bathymetric relief. We recognize that the tomography
models have uncertainties that will propagate through the
interpolation described above and into HET. However, a
detailed analysis of how these uncertainties manifest
themselves is far beyond the scope of this study. An addi-
tional model, HOM (Table 2), is defined by duplicating
HET and replacing the distribution of material properties
with a single pair of elastic moduli for the entire model
domain (Table 2). A comparison of results from HET and

Figure 5. Maximum shell stiffness and tetrahedra quality for
perturbation limits. The tetrahedra quality, q, range is 0 (poor)
≤ q ≤ 1 (regular tetrahedra), as defined by equation (4). Error
bars denote 1st and 99th percentiles and the black diamonds
are the median values. Dashed lines represent corresponding
values for an unperturbed mesh. Mesh perturbations are
shown at the right for E′ = E0/E1 = 100. Heavy black circles
denote the bounds constraining the search over the maximum
parameter space for S. (a) S = [0, 0, �1500 m]. (b) S = [0, 0,
�4500 m]. (c) S = [1500 m, 0, 0]. The improvement in per-
turbed mesh quality saturates for E′ = E1/E0 > 20.

Figure 4. Stiffness shells for CORE. The gray vertical bars
delimit the 30 stiffness shells. The color bar shows how the
relative Young’s modulus for each shell decreases linearly
from E′ = E1/E0 to unity. Each colored dot represents the
position of an element’s centroid with respect to the initial
estimate of the magma chamber, S0. The colors correspond
to the distribution of the relative Young’s modulus.
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HOM quantifies prediction sensitivities to variations in
material properties.
2.1.3. Validation
[27] Validation is a fundamental step in the modeling

process to ensure that a numerical model is working properly
[Wang and Anderson, 1982]. We can validate the FEM
configuration by comparison of model predictions to known
benchmarks, which ideally come from exact analytical
solutions. Analytical solutions for displacement due to a
pressurized spherical cavity embedded in an elastic domain
having an irregular free surface and arbitrary distribution of
material properties do not exist. It is for this reason that we
turn to FEMs in the first place. We can, however, construct
a simple FEM configuration called VAL having a pressur-
ized spherical cavity embedded in homogeneous, hemi-
spherical elastic domain with a planar, horizontal free surface
(Table 2). The general domain geometry, loading conditions,
and boundary conditions of VAL are not too different from its
more sophisticated counterparts, HET and HOM (Figure 2).
Because VAL well approximates the configuration of analy-
tical HEHSMogi [1958] models, we can compare predictions
from VAL with results of analytical solutions to test
the performance of the VAL configuration assemblage, as
well as the validity of various mesh configurations.
[28] Expressed in index notation, as defined in the context

of equation (1), the displacement for a given point on the
free surface, caused by a pressurized sphere embedded in a
homogeneous, isotropic elastic half-space, is:

ui ¼ C
xi � Sið Þ
D3

with C ¼ DPð1� nÞ r
3
S

G
¼ DV

ð1� nÞ
p

ð5Þ

where C is the source strength, S = [Sx, Sy, Sz] is the position
of the center of the spherical source, D is the Euclidean
distance from S to the point on the free surface, andDV,DP,
and rS are the change in volume, the change in pressure, and
the radius, respectively, of the embedded sphere [Segall,
2010]. We substitute an effective radius, rSeff, for the
embedded chamber in our calculations, because the FEM
approximation of the volume of the embedded sphere is less
than its analytical counterpart. Corresponding residuals
from VAL are less than 5% for both coarse and fine mesh

configurations (Figure 6). Because the coarse mesh config-
uration of VAL has a distribution of characteristic element
lengths that is similar to the mesh of HET, the meshes of
HET and HOM are validated.

2.2. Optimization

[29] We assume that the net line-of-sight displacement, ~u ,
for the ith InSAR pixel is a linear combination of contributions
from the pressurized magma chamber, plane-shift, and noise:

~ui ¼ PsûiL
T þ p1xi þ p2yi þ p3 ð6Þ

where Ps is the scaling pressure, withDP = PsDP0; p1, p2, and
p3 are the coefficients of a plane to account for the displace-
ment at an arbitrary reference location and horizontal com-
ponents of the range gradients attributed to mismodeled orbital
effects [Massonnet and Feigl, 1998]; and the superscript ‘T’
denotes the matrix transpose operator. The matrix û is the
displacement generated by DP0 applied to the magma cham-
ber, as calculated with an FEM, and depends on S in a non-
linear fashion. Row i of û is a three-component vector of
predicted displacements for position i. This formulation has
M = 4 linear parameters and N = 115,550 InSAR pixels. The
forward model and matrix expression of equation (6) for a
given S is:

Gm ¼ d ¼ û LT; x; y; 1
� �

Ps; p1; p2; p3½ �T ð7Þ

where G is a matrix of Green’s functions; m is the parameter
vector; e is the residual; d is a column vector of the InSAR
data, having corresponding pixel locations given by column
vectors x and y; and 1 is a column vector with all elements
equal to unity.
[30] We combine nested Monte Carlo [Press et al., 2007]

and randomly iterated search [Shirzaei and Walter, 2007]
methods to ensure quick convergence to robust parameter
estimates. The algorithm linearizes the problem by randomly
sampling the three-dimensional parameter space for S and
solves for linear parameters Ps, p1, p2, and p3 for each rea-
lization of S. The least squares linear inverse solution for
equation (7) is mest = [GTG]�1GTd, where e = [d � ~u] and
~u = G mest [Menke, 1989]. Best fit solutions are achieved
by adaptively decreasing nested parameter bounds for S,
until all seven calibration parameters converge. A detailed
description of the nested Monte Carlo procedure follows.
[31] First, we specify initial bounds on the three-

dimensional parameter space for S. These bounds form the
surface of a sphere (not to be confused with the spherical
magma chamber), for which the two horizontal coordinates
have been estimated using an HEHS model [Masterlark,
2007]. Previous studies indicate that this position is robust
for HEHS models [Masterlark et al., 2010, and references
therein]. The initial depth estimate is a compromise
between the shallower expected depths from HEHS models
(�3000 m < Sz < �2000 m) and deeper source positions
(Sz = �4000 m) expected from tomography models
[Masterlark et al., 2010] and the influence of weak materials
in the shallow caldera [Masterlark, 2007]. The initial esti-
mate of the sphere’s position is S = S0 = [0, 0,�3000 m] and
the initial radius of the bounding sphere is 1500 m, effec-
tively constraining the solution for S. Second, we specify an
adaptation schedule for the radius b of the bounding sphere.

Figure 6. FEM validation. Solid lines are radial and vertical
components of displacement for source depth of 4000 m
[Mogi, 1958]. Black and gray circles are corresponding pre-
dictions calculated using VAL for coarse and fine mesh con-
figurations, respectively.
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This schedule includes a total of 12 adaptations for the
parameter bounds that begin with b0 = 1500 m and incre-
mentally decrese to b11 � 6 m:

bt ¼ b0 e�t=2 ð8Þ

where t is a vector of increasing integers spanning 0 ≤ t ≤ 11.
The radius of the spherical parameter space for all adapta-
tions is described by the vector b = [b0…b11]. For each
adaptation, the random realizations of S are constrained by
the union of spheres having bt centered on St and b0 centered
on S0. This adaptation schedule provides a good compro-
mise between quick convergence and resistance to local
minima, as presented later in the results section. Third, we
implement the nested Monte Carlo method to search for
optimal solutions for sequentially decreasing parameter
bounds for S. Beginning with the initial parameter bounds
(b0 centered on S0), the procedure specifies 100 random
realizations of S. Displacements (û) are calculated for each
realization using the PMP method andDP, p1, p2, and p3 are
estimated with the least squares inverse method [Menke,
1989]. The best solution is identified and the initial posi-
tion S0 is updated to S1 according to corresponding para-
meters of the best solution. The procedure thus adapts to
new spherical bounds (b1 centered on S1) for S and the
process is repeated. This procedure continues through 12
adaptations, after which the solution has converged to a
position precision of about 6 m. Finally, we conduct this
process 10 times, each having a new randomization seed, to
ensure robust convergence to a global solution. Ultimately,
the procedure samples 12,000 random realizations of the
three-dimensional nonlinear parameter space for S. Once
we specify the initial bounds and the adaptation schedule,
the procedure is fully automated. We conduct the entire
optimization process and post processing, other than FEM
execution, with IDL (version 6.4, ITT Visual Information
Solutions, Boulder, Colorado, 2007) software.

3. Results and Discussion

[32] Each realization of S and corresponding estimates for
DP, p1, p2, and p3 takes about 47 s using parallel

computation on three cores of a 3 GHz quad core CPU with
sufficient physical memory to contain the entire equation
solver, thus minimizing computationally expensive input/
output operations. The total analysis time for 24,000 reali-
zations (12,000 each for HET and HOM) is about 14 days.
The results are summarized in Table 3. Estimates of the
source parameters for both configurations converged to a
solution by adaptation t = 7 for all randomly iterated sear-
ches (Figure 7).
[33] The misfit determined from the summed square of

residuals HET, calculated using the best fitting estimate of
the model parameters, is eTe = 16.51 m2. The corresponding
misfit value for HOM is slightly larger, eTe = 16.93 m2.
From the misfit for HET, we determine the a posteriori
uncertainty of a single InSAR measurement to be s = [eTe/
(N � M)]1/2 = 12.0 mm. The preceding calculation, how-
ever, neglects the correlations between InSAR pixels,
rendering subsequent goodness-of-fit tests problematic [e.g.,
Aster et al., 2005; Lohman and Simons, 2005]. Nonetheless,
we can compare HET to HOM. To do so, we test the null
hypothesis that the HOM and HET residuals sample normal

Table 3. Calibrated Parametersa

HET HET Recovery Test HOM

Sx
b (m) �18�52

+52 �18 40�49
+50

Sy
b (m) �71�58

+63 71 83�64
+64

Sz
b (m) �3527�54

+55 �3527 �2665�46
+42

DP (MPa) �328�12
+12 �328 �361�12

+13

DV � 107 (m3) �6.1 �6.1 �5.4
p1 � 10�7 3.81�0.22

+0.21 3.82 4.70�0.23
+0.24

p2 � 10�8 �3.92�1.36
+1.45 �3.93 �2.23�1.42

+1.39

p3 � 10�2 (m) �5.11�0.18
+0.18 �5.11 �4.46�0.19

+0.20

eTe (m2) 16.506 1.78 � 10�4 16.929
Signal recovery 92.9% 92.7%
Linear parameters (M) 4 4
n (M � N) 115,546 115,546
Rxy
2 0.01 0.15

Rxz
2 0.18 0.18

Ryz
2 0.19 0.19

RzDP
2 0.82 0.78

aReported uncertainties are 2.5% and 97.5% quantiles.
bWith respect to the origin defined in Table 2.

Figure 7. Convergence of calibration parameter estimates.
Black and gray curves are from HET and HOM, respec-
tively. Convergence is achieved by adaptation t = 7 (b7 =
45 m) for all calibration parameters. (a) Misfit, eTe. (b) Sx.
(c) Sy. (d) Sz. (e) DP.
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distributions with the same variance, such that H0: sHOM
2 =

sHET
2 using an F test [Larsen and Marx, 1986;Menke, 1989]:

F ¼ s21
s20

with s2 ¼ 1

N � 1

XN
i¼1

e2i ð9Þ

In this case, S0
2 = SHET

2 and S1
2 = SHOM

2 . The value of the test
statistic is F = 16.93/16.51 = 1.03. Since the number of
degrees of freedom is n = N � M = 115,550 � 4 for both
configurations, the critical value for a significance level of a =
0.05 is F(1 � a/2, n, n) = 1.01. Thus, the null hypothesis is
rejected with 95% confidence. We conclude that displacement
predictions from HET fit the observed values (as measured by
InSAR) significantly better than those predicted with HOM.
[34] We conduct a recovery test to validate the PMP-based

nested Monte Carlo method. First, we calculate ~u from HET
and the corresponding best fit parameter values, mest. Then,
we execute 10 randomly iterated searches using the nested
Monte Carlo optimization scheme specified above for HET
and treat ~u as the data vector. The misfit for this recovery test
is eTe = 1.78 � 10�4 m2, with a root-mean squared error
of 4.0 � 10�5 m. The 95% confidence interval for each
estimated parameter includes the value used to generate the
synthetic deformation field, thus validating the PMP-based
nested Monte Carlo method.
[35] Now that we have validated our estimation method,

we use the results from these two best fitting configurations
for HET and HOM as the basis to determine acceptable
alternatives from the 12,000 respective realizations of S. In
this case, the null hypothesis is H0: Predictions of the best fit
model are equivalent to predictions from alternative models
that simulate different realizations from S. The alternative
hypothesis is HA: Predictions of the best fit model are better
than predictions from alternative models that simulate dif-
ferent realizations from S. We conduct a series of F tests
comparing the best fit model to models having different
realizations of S and determine acceptable realizations
of S. This analysis is performed separately for HET and
HOM using equation (9). In this case, we calculate s0

2 from
the best fit model and s1

2 for each of the 12,000 alternative
realizations. Again, the critical value for a significance level
of 0.05 is 1.01. We reject the null hypothesis for many of the
alternative models. The distribution of estimates for which
the null hypothesis is not rejected delimits the region of 95%

Figure 8. Distributions of parameter estimates from pair-
wise cross sections of the parameter space. Black dots are
samples from the nested Monte Carlo parameter space.
White dots include the 95% confidence regions for estimated
parameters. Black circles are best estimates. Selected results
(black squares with �2s uncertainties) from prior studies
are superposed for reference: 1, Lu and Dzurisin [2010] (first
13 h of 2008 eruption, uncertainties not reported for horizon-
tal position); 2, Lu et al. [2010] (1997–2008 inter-eruption);
3, Masterlark et al. [2010] (1997 eruption); and 4, Lu et al.
[2005] (1997 eruption). (a–d) Results for HET. (e–h) Results
for HOM. Figures 8a and 8e show horizontal position
of source. Figures 8b and 8f are the respective insets from
Figures 8a and 8e. Figures 8c and 8g show depth versus
change in pressure. White dashed line denotes location of
VLP tremor source [Haney, 2010]. Light gray regions repre-
sent petrologic depth constraints [Izbekov et al., 2005]. Esti-
mates of pressure changes, which are strongly dependent on
an assumed radius for the magma chamber, are not shown
for prior results. Figures 8d and 8h are the respective insets
from Figures 8c and 8g.
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confidence in the parameter space (Figure 8). Reported
uncertainties in Table 3 are 2.5% and 97.5% quantiles for
each parameter.
[36] The estimated horizontal position is not sensitive to

the three-dimensional distribution of material properties for
Okmok volcano (Figure 8). Results from HET, HOM, and
previous HEHS-based studies that estimated the horizontal
position of the deformation source of the 1997 eruption of
Okmok [e.g., Lu et al., 2005; Masterlark et al., 2010] are
similar (Figure 8). We calculate Pearson’s linear correlation
coefficient (R) to characterize the linear association among
the source position parameters for each of the acceptable
models:

Rijji≠j ¼

X
m

Si;m � �Si
� 	

Sj;m � �Sj
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

Si;m � �Si
� 	2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m

Sj;m � �Sj
� 	2r ð10Þ

where m is an index for acceptable estimates identified with
F tests, i and j are coordinate indices, and �S is the mean
[Press et al., 2007]. These calculations are performed sepa-
rately for results from HET and HOM and summarized in
Table 3. Linear correlation coefficients for all three para-
meters describing the position of the source are less than 0.2
for both HET and HOM. In particular, linear correlation
coefficients of Rxy

2 = 0.10 and Rxy
2 = 0.15 indicate that the two

estimated horizontal position components are weakly corre-
lated for both HET and HOM, respectively, in agreement
with results from previous analyses of the 1997 eruption of
Okmok [Lu et al., 2005; Masterlark et al., 2010]. For the
case of Okmok, an HEHS model without standard topo-
graphic corrections [e.g., Williams and Wadge, 1998] is
sufficient to estimate the horizontal location of a spherical
pressure source. This is a particularly useful result, because
HEHS analyses are computationally inexpensive compared
to FEM-based counterparts. Therefore, the dimensions of the
parameter space may be reduced by two by treating the two
horizontal position components of the spherical deformation
source as constraining information, rather than calibration
parameters. This simplification corresponds to a two-thirds
reduction in the total computation time for the inversions.
For the specific case of the 1997 eruption of Okmok vol-
cano, the combination of fewer nested Monte Carlo adapta-
tions and a fixed horizontal position of the deformation
source would reduce the total computation time to less than
3 days for HET.
[37] In contrast, the estimated depth of the source is sen-

sitive to the specific distribution of material properties
(Figures 7 and 8). The estimated vertical source positions for
HET and HOM are Sz = �3527�54

+55 m and Sz = �2665�46
+42 m,

respectively. In particular, the relatively weak materials that
fill the shallow caldera strongly influence the estimated
depth of the deformation source by focusing the deformation
within the caldera. This effect allows deeper deformation
sources to produce a pronounced peak of deformation within
the caldera that combines with a longer wavelength of
deformation on the volcano’s flanks. This deformation pat-
tern is challenging to distinguish from that of a shallower
deformation source embedded in a HEHS, as pointed out in
a previous study [Masterlark, 2007]. While HET, HOM, and
previous HEHS-based models all fit the deformation data

reasonably well, the presence of the weak zone leads to a
deeper deformation source that is consistent with the deep
LVZ of tomography models [Masterlark et al., 2010]. Pet-
rologic studies of the 1997 Okmok lava suggest �3700 m <
Sz < �2900 m [Izbekov et al., 2005], which supports the
deeper deformation source estimated for HET. Dieterich and
Decker [1975] describe an experiment where a borehole was
drilled in Kilauea caldera to confirm the position of a sphe-
rical magma chamber predicted from deformation data
[Kinoshita et al., 1969]. When borehole temperature mea-
surements failed to detect a magma chamber at the predicted
position, Dieterich and Decker [1975] suggested that a non-
spherical shape of the chamber was responsible. Here, we
suggest an alternative explanation. Attempting to simulate a
heterogeneous distribution of material properties with an
HEHS model predicts an apparent source depth that is
systematically too shallow.
[38] The estimated change in pressure for both HET and

HOM is DP = �350 MPa (Figures 7 and 8), corresponding
to changes in volume ofDV = 0.06 km3 andDV = 0.05 km3,
respectively. The observed volume of lava erupted in 1997
is 0.154 � 0.025 km3. Assuming 25–75% vesicularity [Lu
et al., 2003], we find the dense rock equivalent volume to
be between 0.03 and 0.13 km3. Predictions from both
models are in excellent agreement with the volume of lava
inferred independently [Lu et al., 2003]. Therefore, both the
HET and HOM configurations are verified. Interpretations
of the estimated changes in pressure, which depend on the
assumed magma chamber radius of 1000 m, are problematic
because they greatly exceed lithostatic conditions and the
tensile strength of rock (�10 MPa [Jaeger, 1956]) for the
estimated deformation source depths. However, equation (5)
indicates that the estimated change in pressure is propor-
tional to the cube of the magma chamber radius and we can
arbitrarily reduce the estimated change in pressure by
increasing the assumed radius of the magma chamber.
[39] Studies of very long period (VLP) tremor suggest that

the 2008 eruption of Okmok was fed by fluids exiting the
magma chamber into a shallow crack-like conduit at z =
�2000 m [Haney, 2010]. HEHS-based studies of InSAR
data for the 2008 eruption, the 1997–2008 inter-eruption
period, and the 1997 eruption confirm that the vertical
position of the deformation source, �3000 < Sz < �2000 m,
is generally persistent [Lu et al., 2003, 2005; Lu and
Dzurisin, 2010; Lu et al., 2010; Mann et al., 2002;
Masterlark, 2007; Masterlark et al., 2010]. On the other
hand, Freymueller and Kaufman [2010] suggest that the
vertical source position may be shallower for the 2008
eruption than for the 1997 eruption. Results from HOM (the
HEHS approximation) in this study are generally consistent
with these previous results (Figures 7 and 8). If we assume
that the magma chamber is a pressurized spherical cavity
(rather than some assembly of deformation sources that
effectively behaves as a pressurized sphere) and assume that
the source position is stationary in time, we can combine the
VLP-based tremor source location of z = �2000 m from the
2008 eruption and maximum hoop stress to graphically
estimate the radius of the magma chamber corresponding to
HET and HOM (Figure 9). The maximum hoop stress for a
pressurized sphere embedded in an HEHS occurs along the
latitude of the sphere that is tangent to a cone having an apex
that intersects the free surface and is horizontally centered
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over the sphere [McTigue, 1987]. Assuming this latitude of
maximum hoop stress corresponds to the VLP tremor
source, we find a magma chamber radius for the HOM
configuration of about 1500 m. This corresponds to a pres-
sure change of DP = 107 MPa, which still exceeds litho-
static constraints. Using the same analysis, the magma
chamber radius for HET should be about 2500 m and is
substantially larger than that of HOM, because the center of
the magma chamber for HET is much deeper. This larger
chamber corresponds to a pressure change of DP = 21 MPa,
which is well within lithostatic constraints for the entire
depth range spanned by this magma chamber.
[40] Several studies suggest rheologic partitioning that

includes a viscoelastic region surrounding the magma
chamber can account for deformation, but require sub-
stantially lower pressure changes compared to purely elastic
counterparts [Del Negro et al., 2009; Jellinek and DePaolo,
2003;Masterlark et al., 2010; Newman et al., 2006]. During
a finite time interval, deviatoric stresses in the viscoelastic
material will relax via viscous flow in response to an applied
stress. This viscoelastic relaxation in the region surrounding
the chamber effectively increases the chamber size [Segall,
2010], thus increasing deformation while maintaining a
constant pressure change. Although thermal models predict
a viscoelastic rind surrounding active magma chambers
[e.g., Del Negro et al., 2009; Masterlark et al., 2010], the
inclusion of viscous flow, a transient process, would greatly
increase computational requirements. Furthermore, adjus-
table viscous flow parameters would increase the dimension
of the parameter space. This additional complexity is beyond
the scope of this study.

[41] Near the center of the caldera and adjacent to the
northern limit of the 1997 lava flow, the residual deforma-
tion field exhibits unexpected structure (Figure 10). Both
HET and HOM over-predict subsidence near the caldera
center and under-predict the subsidence on the flanks of the
volcano. HEHS-based analyses indicate that a model with an
ellipsoidal, rather than spherical, magma chamber does not
significantly improve the fit to InSAR data spanning the
inter-eruption interval between the 1997 and 2008 eruptions
of Okmok [Lu et al., 2010]. Therefore, if the position of the
deformation source spanning the 1997 and 2008 eruption
cycle is nearly stationary, as suggested by others [Lu et al.,
2005, 2010; Lu and Dzurisin, 2010], then the shape of the
chamber is probably not the cause of the systematic misfit
near the center of the caldera. Instead, this misfit is likely
due to the local subsidence within the caldera caused by the
surface loading of the lava flow [Lu et al., 2005] that has not
been accounted for in this study.
[42] A closer inspection of the residuals reveals the failure

of a single deformation source model (depressurization of a
magma chamber) to adequately satisfy our assumption that
the residuals are a good estimate of the noise (Figure 11).
The null hypothesis is H0: The residuals are random noise.
We construct normal quantile-quantile plots (Figures 11b
and 11d) of the residuals to test this hypothesis [Walpole
et al., 2007]. The residuals have excessively heavy tails
with 95% confidence that are incompatible with a Gaussian
distribution and we reject the null hypothesis.
[43] As sketched in Figure 12, the residuals represent a

deformation pattern caused by gravitational loading of the
1997 lava flow that is not accounted for in our models. We
envision a future analysis of InSAR-observed deformation
spanning the complete 1997–2008 eruption cycle, in an
effort to investigate the transient behavior of magma
migration and storage within Okmok volcano. Such an
analysis will account for the gravitational loading of the
1997 lava flow to correct the systematic residuals discussed
above, as well as simulate temperature-dependent rheologi-
cal properties that allow for transient deformation [e.g.,
Masterlark et al., 2010].
[44] The PMP method presents a simple solution to the

problem of simulating geometric entities of arbitrary com-
plexity, such as topography and bathymetry derived from
DEMs. This method would work equally well for internal
partitioning surfaces, such as boundaries between regions
with different rheologic properties. In this study, we
demonstrate the PMP method for a deformational system
having a simple pressurized spherical cavity as the defor-
mation source. In this case, there are three calibration
parameters describing the position of the center of the
pressurized sphere that must be estimated using nonlinear
optimization. The methods are readily extended to pressur-
ized cavities having more complicated geometric config-
urations, such as triaxial ellipsoids and planar dikes and sills,
as well as elastic dislocations along faults [Masterlark,
2003]. One could design a deformational system having
arbitrary deformation source shapes using spherical harmo-
nics and calibration parameters for the corresponding coef-
ficients. However, the dimension of the parameter space
strongly controls the computational cost. Consequently, one
must carefully design the nonlinear inverse analysis to

Figure 9. Schematic comparison of pressure estimates. The
lithostatic pressure (PL) is approximated using PL = �rgz,
where r = 3000 kg/m3, g = 10 m/s2, and z is the depth
beneath the caldera floor. The assumed density represents
an upper limit. Lower densities would decrease the litho-
static pressure and thus decrease the allowable change in
pressure within the magma chamber. Blue and red circles
represent spherical magma chambers for HET and HOM,
respectively. Dike breakout occurs at the spherical latitude
where the cone is tangent to the corresponding sphere
[McTigue, 1987] and corresponds to the depth of the very
long period (VLP) tremor [Haney, 2010]. The gray region
represents the weak materials filling the shallow caldera.
The thick black arrow represents the path of magma migra-
tion, which follows the base of the weak materials and inter-
sects the caldera floor near the rim of the caldera [Masterlark
et al., 2010].
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account for computational limitations and ensure that the
available data warrant the additional model complexity.

4. Conclusions

[45] The methods presented here allow us to combine
nonlinear inverse methods with the capabilities of FEMs
to simulate complex deformational systems having three-
dimensional model domains and arbitrary geometric con-
figurations and distributions of elastic material properties.
More specifically, the FEM-based PMP method satisfies the
primary objective of this study, which is to automatically
impose geometric perturbations and re-meshing that are
necessary to embed FEMs directly into iterative nonlinear
optimization schemes. To the best of our knowledge, this is
the first study to fully automate the calibration of nonlinear
deformation source parameters using three-dimensional
FEMs that simulate volcano deformation.
[46] The three-dimensional distribution of material prop-

erties simulated by the FEMs strongly influences some of
the estimated nonlinear parameters. Horizontal position is
not sensitive to the three-dimensional distribution of material
properties for Okmok volcano. In this case, an HEHS model
is sufficient to estimate the horizontal location of a spherical
pressure source. However, the depth of the deformation
source is sensitive to the presence of a shallow layer of weak
materials filling the caldera. The estimated depths of the
source are 3527�54

+55 m and 2665�46
+42 m below sea level for

model domains simulating heterogeneous (HET) and
homogeneous (HOM) distributions of material properties,
respectively. The deeper source position is in accord with

Figure 11. Best fit residual. (a and c) Probability density
functions of residuals. Solid black curves and dashed vertical
lines show theoretical distributions and associated mean
values. (b and d) Normal quantile-quantile plot of residuals.
Dashed lines are least squares estimates from linear regres-
sions. Solid curves bound the 95% confidence for the mean
response [Walpole et al., 2007]. Departures from a straight
line at both tails of the distribution indicate large resi-
duals inside the caldera, near the lava flow (Figures 10c
and 10f). These heavy tails, a result common to both HET
and HOM, indicate that the single deformation source (pres-
surized spherical magma chamber) is insufficient to account
for the InSAR observations in this region.

Figure 10. Predicted line-of-sight deformation. The white circle at center of the caldera is the horizontal
position of S0. (a and d) InSAR data, duplicated from Figure 1 for ease of comparison. (b and e) Predicted
InSAR for HET and HOM, respectively. (c and f) Residual for HET and HOM, respectively. Note the
different deformation scale in the residual plots versus the InSAR and predicted plots. Blue and yellow
residual regions indicate over-predicted and under-predicted subsidence, respectively.
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available constraints from tomography models and petrol-
ogy. Furthermore, a statistical test confirms that the fit of
HET is a significant improvement at the 95% confidence
level, compared to the fit of HOM.
[47] Because our analysis is limited to a purely elastic

rheology and simulates magma chambers with a radius of
1000 m, the estimated changes in pressure exceed 300 MPa
for both HET and HOM. These pressure changes exceed
lithostatic pressure, although the corresponding changes in
volume are consistent with the observed lava flow. VLP
tremor observations and hoop stress arguments suggest that
the radius of the magma chamber for HET is 2500 m,
reducing the required change in pressure to 21 MPa, well
within lithostatic constraints. These same arguments suggest
that the radius of the magma chamber for HOM is 1500 m,
which implies a pressure change of 107 MPa that still
exceeds lithostatic constraints. The failure of an HEHS-
based analysis to account for tomography models of Okmok
volcano translates to underestimating the depth of the
magma chamber and overestimating the pressure change
within the magma chamber. HEHS models of Okmok vol-
cano are useful for providing initial conditions for FEM-
based nonlinear inverse analyses, but are unreliable for
quantitative interpretations of magma migration and storage.
We propose that future analyses of deformation for Okmok
volcano include both forward and inverse models that
account for petrologic constraints, the distribution of mate-
rial properties available from tomography models, rheologic
properties consistent with thermal models, and gravity
loading due to lava emplacement. The FEM-based PMP

methods presented here are sufficient to satisfy these
requirements.

Notation

1 vector having all elements equal to unity.
a index, dimensionless.
b radius of sphere describing the parameter bounds, m.
b0 initial radius of sphere describing the parameter

bounds, m.
b vector of radii for parameter bounds, m.
C source strength, m3.
d vector of InSAR line-of-sight displacements, m.
D Euclidean distance, m.
e residual, m.
e vector of residuals, m.
E Young’s modulus, Pa.
E′ relative Young’s modulus, dimensionless.
g gravitational acceleration, m/s2.
G shear modulus, Pa.
G Green’s functions, matrix.
i index, dimensionless.
j index, dimensionless.
l length of tetrahedral edge, m.
L average line-of-sight, unit vector.
m index, dimensionless.
m parameter vector.
M number of parameters, dimensionless.
N nodal definition matrix.
N0 initial nodal definition matrix.
N number of observations, dimensionless.
p1 eastward component of range gradient, dimensionless.
p2 northward component of range gradient, dimensionless.
p3 additive range shift, m.
PL lithostatic pressure, Pa.
DP change in pressure, Pa.
DP0 impulse change in pressure, Pa.
Ps pressure scaling coefficient, dimensionless.
q normalized quality of tetrahedron, dimensionless.

q* normalizing coefficient, m�3.5.
rS radius of magma chamber, m.

rSeff effective radius of magma chamber, m.
R Pearson’s linear correlation coefficient, dimensionless.
s2 sample variance, m2.
S magma chamber position coordinate, m.
�S mean of a magma chamber position coordinate, m.
S magma chamber position vector, m.
S0 initial magma chamber position vector, m.
t index adaptations for parameter bounds,
dimensionless.

u displacement component, m.
u displacement vector, m.
û matrix of displacements generated by impulse change

in pressure, m.
~u vector of net predicted displacements, m.
U domain design matrix.

DV change in volume of magma chamber, m3.
Vs shear wave velocity, m/s.
VT volume of tetrahedron, m3.
x Cartesian position component, m.
x Cartesian position vector, m.

Figure 12. Schematic of gravitational loading effects.
A west-east cross section of the volcano’s elevation (VE =
1:1) is shown at the bottom for spatial reference. The
observed deformation (black curve) is assumed to be purely
vertical in this schematic and is the net response to localized
gravitational loading of the lava flow (blue curve), and the
volcano-wide deformation of magma chamber depressuriza-
tion (red curve). The best fitting model (green curve) tries
to simulate the net deformation with only a single volcano-
wide deformation source and over-predicts subsidence in
the central caldera (blue shaded region) and under-predicts
subsidence elsewhere (red shaded region). This misfit pattern
is evident in Figures 10c and 10f and explains the heavy tails
in the normal quantile-quantile plot (Figures 11b and 11d).
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y Cartesian position component, m.
y Cartesian position vector, m.
z Cartesian position component, m.
a level of statistical significance, dimensionless.
n degrees of freedom, dimensionless.
r density, kg/m3.
u Poisson’s ratio, dimensionless.
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