106 research outputs found

    Analyzing Local Carbon Dioxide and Nitrogen Oxide Emissions From Space Using the Divergence Method: An Application to the Synthetic SMARTCARB Dataset

    Get PDF
    Since the Paris Agreement was adopted in 2015, the role of space-based observations for monitoring anthropogenic greenhouse gas (GHG) emissions has increased. To meet the requirements for monitoring carbon dioxide (CO2) emissions, the European Copernicus programme is preparing a dedicated CO2 Monitoring (CO2M) satellite constellation that will provide CO2 and nitrogen dioxide (NO2) observations at 4 km2 resolution along a 250 km wide swath. In this paper, we adapt the recently developed divergence method to derive both CO2 and nitrogen oxide (NOx) emissions of cities and power plants from a CO2M satellite constellation by using synthetic observations from the COSMO-GHG model. Due to its long lifetime, the large CO2 atmospheric background needs to be removed to highlight the anthropogenic enhancements before calculating the divergence. Since the CO2 noise levels are large compared to the anthropogenic enhancements, we apply different denoising methods and compare the effect on the CO2 emission estimates. The annual NOx and CO2 emissions estimated from the divergence maps using the peak fitting approach are in agreement with the expected values, although with larger uncertainties for CO2. We also consider the possibility to use co-emitted NOx emission estimates for quantifying the CO2 emissions, by using source-specific NOx-to-CO2 emission ratios derived directly from satellite observations. In general, we find that the divergence method provides a promising tool for estimating CO2 emissions, alternative to typical methods based on inverse modeling or on the analysis of individual CO2 plumes

    Global raster dataset on historical coastline positions and shelf sea extents since the Last Glacial Maximum

    Get PDF
    Motivation: Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130 m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained: The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea levels <140 m) are presented, showing the extent of land (1), shelf sea (0) and deep sea (NULL) per time step of 0.5 kyr from 26 ka to the present. Spatial location and grain: The coastline age raster and shelf sea rasters have a global representation. The spatial resolution is scaled to 120 arcsec (0.333° × 0.333°), implying cells of c. 3,704 m around the equator, 3,207 m around the tropics (±30°) and 1,853 m in the temperate zone (±60°). Time period and temporal resolution: The coastline age raster shows the age of coastline positions since the onset of the LGM 26 ka, with time steps of 0.5 kyr. The 53 shelf sea rasters show, for each time step of 0.5 kyr, the position of the shelf seas (seas shallower than 140 m) and the extent of land. Level of measurement: Both the coastline age raster and the 53 shelf sea rasters are provided as TIFF files with spatial reference system WGS84 (SRID 4326). The values of the coastline age raster per grid cell correspond to the most recent coastline position (in steps of 0.5 kyr). Values range from 0 (0 ka, i.e., present day) to 260 (26 ka) in bins of 5 (0.5 kyr). A value of “no data” is ascribed to pixels that have remained below sea level since 26 ka. Software format: All data processing was done using the R programming language

    Recent geospatial dynamics of Terceira (Azores, Portugal) and the theoretical implications for the biogeography of active volcanic islands

    Get PDF
    Ongoing work shows that species richness patterns on volcanic oceanic islands are shaped by surface area changes driven by longer time scale (>1 ka) geological processes and natural sea level fluctuations. A key question is: what are the rates and magnitudes of the forces driving spatial changes on volcanic oceanic islands which in turn affect evolutionary and biogeographic processes? We quantified the rates of surface-area changes of a whole island resulting from both volcanogenic flows and sea level change over the last glacial-interglacial (GI) cycle (120 ka) for the volcanically active island of Terceira, (Azores, Macaronesia, Portugal). Volcanogenic activity led to incidental but long-lasting surface area expansions by the formation of a new volcanic cone and lava-deltas, whereas sea level changes led to both contractions and expansions of area. The total surface area of Terceira decreased by as much as 24% per time step due to changing sea levels and increased by 37% per time step due to volcanism per time step of 10 ka. However, while sea levels nearly continuously changed the total surface area, volcanic activity only impacted total surface area during two time steps over the past 120 ka. The surface area of the coastal and lowland region (here defined as area <300 m) was affected by sea level change (average change of 11% / 10 ka for 120–0 ka) and intra-volcanic change (average change of 17% / 10 ka for 120–0 ka). We discuss the biogeographic implications of the quantified dynamics, and we argue that surface area change is mainly driven by volcanic processes in the early stages of the island’s life cycle, while during the later stages, area change becomes increasingly affected by sea level dynamics. Both environmental processes may therefore affect biota differently during the life cycle of volcanic oceanic islands.S.J.N. received funding from the Portuguese National Funds, through Fundação para a CiĂȘncia e a Tecnologia (FCT), within the project UID/BIA/00329/2013 and the Research Fellowship PD/BD/114380/2016. S.P.A. acknowledges his research contract (IF/00465/2015) funded by the Portuguese Science Foundation (FCT). C.S.M. is benefiting from a PhD grant M3.1.a/F/100/2015 from FRCT/Açores 2020 by Fundo Regional para a CiĂȘncia e Tecnologia (FRCT). Financial support to R.A. was received from the Laboratory of Excellence ‘TULIP’ (PIA-10-LABX-41). This work was supported by FEDER funds through the Operational Programme for Competitiveness Factors – COMPETE and by National Funds through FCT under the UID/BIA/50027/2013, POCI-01-0145-FEDER-006821 and under DRCT-M1.1.a/005/Funcionamento-C-/2016 (CIBIO-A) project from FRCT. This work was also supported by FEDER funds (in 85%) and by funds of the Regional Government of the Azores (15%) through Programa Operacional Açores 2020, in the scope of the project “AZORESBIOPORTAL – PORBIOTA”: ACORES‑01‑0145-FEDER-000072.info:eu-repo/semantics/publishedVersio

    Peripheral electrical stimulation in Alzheimer's Disease: A randomized controlled trial on cognition and behavior

    Get PDF
    In a number of studies, peripheral electrical nerve stimulation has been applied to Alzheimer's disease (AD) patients who lived in a nursing home. Improvements were observed in memory, verbal fluency, affective behavior, activities of daily living and on the rest-activity rhythm and pupillary light reflex. The aim of the present, randomized, placebo-controlled, parallel-group clinical trial was to examine the effects of electrical stimulation on cognition and behavior in AD patients who still live at home. Repeated measures analyses of variance revealed no effects of the intervention in the verum group (n = 32) compared with the placebo group (n = 30) on any of the cognitive and behavioral outcome measures. However, the majority of the patients and the caregivers evaluated the treatment procedure positively, and applying the daily treatment at home caused minimal burden. The lack of treatment effects calls for reconsideration of electrical stimulation as a symptomatic treatment in A

    Context-aware modeling of neuronal morphologies

    Get PDF
    © 2014 Torben-Nielsen and De Schutter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these termsNEURONAL MORPHOLOGIES ARE PIVOTAL FOR BRAIN FUNCTIONING: physical overlap between dendrites and axons constrain the circuit topology, and the precise shape and composition of dendrites determine the integration of inputs to produce an output signal. At the same time, morphologies are highly diverse and variant. The variance, presumably, originates from neurons developing in a densely packed brain substrate where they interact (e.g., repulsion or attraction) with other actors in this substrate. However, when studying neurons their context is never part of the analysis and they are treated as if they existed in isolation. Here we argue that to fully understand neuronal morphology and its variance it is important to consider neurons in relation to each other and to other actors in the surrounding brain substrate, i.e., their context. We propose a context-aware computational framework, NeuroMaC, in which large numbers of neurons can be grown simultaneously according to growth rules expressed in terms of interactions between the developing neuron and the surrounding brain substrate. As a proof of principle, we demonstrate that by using NeuroMaC we can generate accurate virtual morphologies of distinct classes both in isolation and as part of neuronal forests. Accuracy is validated against population statistics of experimentally reconstructed morphologies. We show that context-aware generation of neurons can explain characteristics of variation. Indeed, plausible variation is an inherent property of the morphologies generated by context-aware rules. We speculate about the applicability of this framework to investigate morphologies and circuits, to classify healthy and pathological morphologies, and to generate large quantities of morphologies for large-scale modeling.Peer reviewe

    Global raster dataset on historical coastline positions and shelf sea extents since the Last Glacial Maximum

    Get PDF
    Abstract Motivation Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130?m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea level

    Relevance of the JAK2V617F mutation in patients with deep vein thrombosis of the leg

    Get PDF
    Venous thromboembolism (VTE) can be the first presenting symptom in myeloproliferative neoplasms (MPN). Studies have demonstrated a high prevalence of the JAK2V617F mutation in patients with splanchnic vein thrombosis. Fewer studies have been done in patients with thrombosis outside the splanchnic area, showing a lower prevalence although the clinical relevance of the mutation in these patients, e.g., progression to overt MPN, remains unknown. The objective of this study was to determine the effect size of JAK2V617F in prospectively collected DNA samples of patients objectively diagnosed with deep vein thrombosis (DVT) of the leg and controls without DVT, with follow-up on JAK2V617F-positive patients to assess clinical relevance. Presence of JAK2V617F was determined in DNA samples from 187 patients with DVT and 201 controls, using quantitative RT-PCR. Hematological parameters were also analyzed. All initially JAK2V617F-positive patients were reassessed. Of 187 patients with DVT, 178 were analyzed for JAK2V617F, and in four (2.3%; 95% CI 0.1–4.4), JAK2V617F was present. Of 201 controls, 198 were analyzed; one was JAK2V617F positive (0.5%; 95% CI −0.5–1.5, OR 4.5; 95% CI 0.5–40.9). None had MPN features, nor upon reassessment after a median follow-up of 68.5 months. Four JAK2V617F-positive patients with DVT and one control without DVT did not develop overt MPN after a median follow-up of nearly 6 years. Thus, in patients with non-splanchnic venous thrombosis, JAK2V617F appears not to be clinically relevant
    • 

    corecore