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Since the Paris Agreement was adopted in 2015, the role of space-based observations for
monitoring anthropogenic greenhouse gas (GHG) emissions has increased. To meet the
requirements for monitoring carbon dioxide (CO2) emissions, the European Copernicus
programme is preparing a dedicated CO2Monitoring (CO2M) satellite constellation that will
provide CO2 and nitrogen dioxide (NO2) observations at 4 km2 resolution along a 250 km
wide swath. In this paper, we adapt the recently developed divergence method to derive
both CO2 and nitrogen oxide (NOx) emissions of cities and power plants from a CO2M
satellite constellation by using synthetic observations from the COSMO-GHG model. Due
to its long lifetime, the large CO2 atmospheric background needs to be removed to
highlight the anthropogenic enhancements before calculating the divergence. Since the
CO2 noise levels are large compared to the anthropogenic enhancements, we apply
different denoising methods and compare the effect on the CO2 emission estimates. The
annual NOx and CO2 emissions estimated from the divergence maps using the peak fitting
approach are in agreement with the expected values, although with larger uncertainties for
CO2. We also consider the possibility to use co-emitted NOx emission estimates for
quantifying the CO2 emissions, by using source-specific NOx-to-CO2 emission ratios
derived directly from satellite observations. In general, we find that the divergence method
provides a promising tool for estimating CO2 emissions, alternative to typical methods
based on inverse modeling or on the analysis of individual CO2 plumes.

Keywords: carbon dioxide, nitrogen oxides, anthropogenic emissions, SMARTCARB, CO2M, divergence method,
emission ratio

1 INTRODUCTION

Using satellite data for estimating carbon dioxide (CO2) emissions from anthropogenic sources has
become increasingly important since the Paris Agreement was adopted in 2015, as satellites provide
consistent observations with global coverage. The very first study that estimated CO2 emissions from
individual power plants using satellite data was published in 2017 (Nassar et al., 2017). Before that,
Bovensmann et al. (2010) provided the first theoretical study on monitoring power plant CO2
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emissions from space. In recent years, the literature has been
rapidly expanding with several new approaches and case studies
(e.g., Reuter et al., 2019;Wu et al., 2020; Hakkarainen et al., 2021).
One key success element has been the launch of NASA’s CO2

mission, Orbiting Carbon Observatory-2 (OCO-2), in 2014 that
has enabled many of these studies, even if its narrow swath (less
than 10 km wide) is not optimal for the analysis of anthropogenic
signals. Recently, NASA’s OCO-3 instrument, operating on the
International Space Station, has been providing Snapshot Area
Map (SAM) and target mode measurements for the analysis of
emission hot spots like cities and power plants (Kiel et al., 2021).

In Europe, one of the key activities responding to the needs of the
Paris Agreement to monitor anthropogenic CO2, is the Copernicus
CO2 Monitoring (CO2M) mission (Janssens-Maenhout et al., 2020;
Meijer et al., 2020). Currently, a two-to-three-satellite constellation is
planned. The first two satellites are to be delivered in October 2025,
with the first launch scheduled at the end of 2025. In addition to
CO2, the CO2M instrument will measure nitrogen dioxide (NO2)
and methane (CH4). The requirement for the spatial resolution is
4 km2 and for the imaging swath larger than 250 km. To support
achieving the strict accuracy requirements of the GHG
measurements, dedicated aerosol and cloud instruments are
added to the payload.

Many of the proposed techniques for estimating CO2

emissions from local sources are based on single satellite
overpasses (e.g., Varon et al., 2018). Observations of NO2, co-
emitted with CO2, are often used for detecting the emission
plume and its shape (e.g., Kuhlmann et al., 2019; Reuter et al.,
2019; Hakkarainen et al., 2021). The NO2 signal-to-noise ratio is
generally higher compared to CO2 and the NO2 plumes are easier
to detect with current satellite instruments owing to their wider
satellite swaths. Since the launch of TROPOMI/Sentinel 5p (S5p)
in 2017, it has been possible to observe individual NO2 emission
plumes from single satellite overpasses (unlike its predecessors).

In comparison to CO2, the lifetime of NO2 is very short (only a
few hours) and the signal-to-noise is higher. For these reasons,
nitrogen oxide (NOx = NO+NO2) emission areas can be easily
identified by averaging satellite NO2 concentrations over a
sufficiently long period of time. To estimate NOx emissions from
averaged NO2 columns, methods based on the temporal averages of
spatially co-located observations are often applied (Fioletov et al.,
2015; Beirle et al., 2011, 2019; de Foy et al., 2014). The advantage of
these methods is that they do not require complex atmospheric
modeling and that they generally provide more robust emission
estimates compared to individual satellite overpasses. In addition,
these approaches have been successfully applied to instruments and
locations, where the individual plumes are not detectable, but the
emission signal becomes visible when multiple scenes are averaged
(e.g., Ialongo et al., 2021).

Conversely, emission estimation methods based on temporal
averaging have not yet been successfully applied to satellite-based
observations of column-averaged CO2 dry air mole fraction
(XCO2), although this option has been discussed by
Hakkarainen et al. (2016) and Hill and Nassar (2019). The
main challenges are related to the scarce coverage of current
CO2 measurement systems as well as the large background signal.
To link the satellite XCO2 observations to anthropogenic sources,

we must define the XCO2 anomalies as the difference to a regional
background that accounts for the increasing CO2 levels in the
atmosphere and its spatio-temporal variability (Hakkarainen
et al., 2016, 2019).

In this paper, we discuss the use of methods based on temporal
averaging for estimating the CO2 and NOx emissions from
satellite observations. In particular, we adapt the divergence
method, developed originally for NO2 (Beirle et al., 2019,
2021) to estimate CO2 emissions. The method is applied to
the SMARTCARB dataset of synthetic satellite observations,
which was produced to closely mimic the CO2 and NO2

observations of the upcoming CO2M mission (Kuhlmann
et al., 2020b). In addition, we estimate source-specific NOx-to-
CO2 emission ratios for converting the satellite-based estimates of
NOx emissions into CO2 emissions.

The paper is organized as follows. Section 2 describes the
SMARTCARB dataset and the different emission estimation
techniques. In Section 3 we apply the proposed emission
estimation methods to the SMARTCARB dataset. We discuss
the results in Section 4 and Section 5 concludes the paper.

2 DATA AND METHODS

2.1 SMARTCARB Dataset
The synthetic observations used in this study were created within
the ESA-funded SMARTCARB project to prepare for the
upcoming CO2M mission. The dataset has been extensively
described and used in previous works (Brunner et al., 2019;
Kuhlmann et al., 2019, 2020a, 2021), and is openly available
(Kuhlmann et al., 2020b).

The synthetic NO2 and CO2 vertical columns are based on
atmospheric transport model simulations obtained with the
COSMO-GHG model at 1 km by 1 km resolution. The model
domain covers parts of Germany, Poland and Czechia for the
year 2015. The synthetic data were further averaged to 2 km by
2 km satellite pixels along the 250 km wide swath of simulated
CO2M satellite orbits. In this study, we mainly use a constellation
setup with two satellites, but we carry out additional tests with one to
six satellites. Furthermore, we apply a Gaussian random noise with
standard deviation of 1.5 × 1015 molec./cm2 to the NO2 simulations
and 0.5 ppm to the XCO2 simulations. The CO2M mission
requirements indicate that the CO2 precision shall be better than
0.7 ppm for vegetation scenario at solar zenith angle of 50 degrees
and the NO2 precision better than 1.5 × 1015 molec./cm2 (Meijer
et al., 2020). Figure 1 shows an example of XCO2 observations on a
250 km wide CO2M orbit overlaid with the simulated XCO2 field.
The NOx and CO2 emissions used as input in the simulations are
summarized in Table 1 for six large point sources and the city of
Berlin (Figure 1). Table 1 includes also the annual emissions at 11
UTC, which approximately corresponds to the foreseen satellite
overpass time of CO2M over Central Europe.

2.2 Divergence Method
Beirle et al. (2019), Beirle et al. (2021) introduced the divergence
method to estimate the NOx emissions from TROPOMI NO2

retrievals. Here we provide an overview of the method applied to
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synthetic CO2M satellite retrievals of both NO2 and CO2 vertical
columns. Amore comprehensive theoretical discussion is given in
the supplementary material, including more details on the
different assumptions. The divergence method is based on the
continuity equation (Jacob, 1999) at the steady state, where the
divergence of vector field F (flux) is defined as the difference
between emissions E and sinks S:

∇ · F � E − S. (1)
The flux F is defined as F = (Fx, Fy) = (V · u, V · v), where V is the
vertical column density observed by satellite, and u and v are the
eastward and northward winds, respectively, at the level of the
enhanced concentrations. As discussed by Beirle et al. (2019), the
NOx sink can be calculated from theNO2 columns as S= LV/τ, where
τ is the NOx lifetime generally assumed as 4 hours (as used also in the
SMARTCARB simulations) and L is the constant NOx-to-NO2 ratio

(typically assumed as 1.32 as in Beirle et al., 2011, 2019). In the follow-
up paper by Beirle et al. (2021), the sink term is neglected due to the
uncertainties in the assumed NOx lifetime and only the divergence is
analyzed. The divergence method can also be applied to CO2 but
since its lifetime is extremely long (in the order of centuries) as
compared to NOx, the sink term can be neglected as well.

For the flux calculation we use the wind information from the
European Centre for Medium-Range Weather Forecasts (ECMWF)
next-generation reanalysis ERA5 dataset (Hoffmann et al., 2019)
given at 0.1°×0.1° grid size resolution. Following the approach by
Fioletov et al. (2015), we use the mean value from the layers at 900,
950 and 1000 hPa. For each satellite pixel, we take the closest point
from the wind grid and then temporally interpolate the wind values
to the measurement time.

As the divergence operator is linear, the divergence can be
calculated from the mean Fx and Fy fields as reported by Beirle
et al. (2019, 2021). However, due to missing values in the data, the
averaging and divergence operators are not entirely commutative.
In our analysis, we found that the divergence fields are less
affected by missing data if the divergence operator is
calculated before averaging, and thus this option was used
throughout the paper. Supplementary Figure S1 in the
supplement shows an example of the CO2 divergence maps
calculated before and after the temporal averaging, with the
former option showing less noisy patterns.

The partial derivatives, needed for the divergence ∇ · F = (zFx/zx,
zFy/zy), are calculated using second-order central differences. For data
points along the edges, the partial derivatives are calculated using
single-sided differences. To adapt the original divergence approach
(Beirle et al., 2019) to long-lived gases, such as CO2, we remove the

FIGURE 1 | Synthetic XCO2 observations on 23 April 2015 over a 250 km wide swath of the planned CO2M instrument (low-noise scenario). Simulated
SMARTCARB XCO2 field is illustrated on the background. Missing CO2 measurements (cloud fraction larger than 1%) are shown in white. The black rectangle indicates
the study area. The emission sources considered in the analysis (Berlin, Boxberg, Jänschwalde, Lippendorf, Schwarze Pumpe, and Turów) are highlighted.

TABLE 1 | Summary of the emissions used in the SMARTCARB dataset.

Place CO†
2 NO‡

x NOx/CO
+
2

Mean 11 UTC Mean 11 UTC

Berlin 46.2 54.6 49.9 61.4 1.08
Boxberg 52.2 63.2 42.2 51.0 0.81
Jänschwalde 91.3 110.5 73.8 89.2 0.81
Lippendorf 41.8 50.6 33.8 40.9 0.81
Schwarze Pumpe 22.5 27.2 18.2 22.0 0.81
Turów 23.9 28.9 35.9 43.5 1.50

†kilotons per day.
‡tons per day.
+value × 10–3.
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atmospheric background (e.g., as in Hakkarainen et al., 2016) before
calculating the divergence as the flux is not linear with the column V
due to the changing wind speed. Thus, before the calculation of the
divergence, we derive the XCO2 anomaly (XCOa

2) as
XCOa

2 x, y, t( ) � XCO2 x, y, t( ) − XCObg
2 t( ). (2)

Here we define the background XCObg
2 for each orbit as the

median over the area of interest. The definition of the background
can be tuned case-by-case. The full theoretical derivation of the
divergence method, the background removal and other aspects of
the approach are discussed in the supplementary material.

2.3 Peak Fitting
In order to calculate source-specific emissions from the
enhancements in the averaged divergence/emission fields, the
peak fitting approach (as in Beirle et al., 2021) can be applied by
fitting the following function, including a Gaussian and a linear
term:

P x, y( ) � A

2πσxσy
exp − x − x0( )2

2σ2x
( )exp − y − y0( )2

2σ2
y

⎛⎝ ⎞⎠
+mx x − x0( ) +my y − y0( ) + b,

(3)

where A is the estimated source-specific flux. The variables σx
and σy describe the width of the two-dimentional Gaussian
function, and x0 and y0 indicate the location of the source. The
terms mx, my and b define the linear background field. Here we
estimate all of the variables mentioned above using the Markov
chain Monte Carlo (MCMC) toolbox developed by Laine
(2008) (available online at https://mjlaine.github.io/
mcmcstat/) using an adaptive Metropolis algorithm (Haario
et al., 2001). We also estimate the statistical noise of the
averaged divergence field using MCMC. The fitted
parameters are estimated as the mean values of the
posterior distribution and the fitting uncertainties as the
standard deviation.

2.4 Exponentially-Modified Gaussian
Method
As an alternative to the divergence method, we estimate the NOx

emissions also by fitting the synthetic observations with the
exponentially-modified Gaussian (EMG) function (Beirle et al.,
2011). Before fitting, we apply the wind rotation technique
(Fioletov et al., 2015) by rotating each pixel around the point
source according to the wind direction so that all scenes have
wind direction from west to east. The resulting rotated mean field
is then integrated along the latitudinal dimension to derive the
NO2 line densities. Those are then fitted with a 1D EMGmodelM
(as in Beirle et al., 2011) as follows:

M x( ) � Q × epG( ) x( ) + B. (4)
Here Q is the emission factor (E = Q × u), B is the background
(both given in molec./m), u is the effective wind speed, and
(e*G)(x) is the convolution between the Gaussian function G and
the exponential decay

e x( ) � exp − x −X( )/d( ), x≥X downwind( ),
0, x<X upwind( ).{ (5)

The variable X is the distance along the wind direction between
the line density peak and the point source. The NOx lifetime can
be obtained by dividing the e-folding distance d with the mean
wind speed as τ = d/u. We estimate all together five parameters:Q,
B,X, d, and the width of the Gaussian function. For the estimation
of the parameters, we use the MCMC approach described in
Section 2.3. The uncertainties related to this method have been
discussed extensively in the literature (e.g., Beirle et al., 2011;
Fioletov et al., 2015; Goldberg et al., 2019).

2.5 Source-Specific NOx-to-CO2 Emission
Ratios
Since the signal-to-noise ratio for NO2 is higher than that for
CO2, it is generally easier to estimate NOx emissions than CO2

emissions from satellite observations. In addition, NO2 retrievals
are less affected by the presence of clouds and more observations
can be acquired. Thus, the CO2 emissions can also be estimated
by scaling the NOx emissions obtained using the divergence
method or the EMG fitting with a source-specific NOx-to-CO2

ratio. On the other hand, NOx emissions depend on assumptions
on the lifetime and the conversion from NO2 to NOx, that are not
needed for CO2.

Here we derive the NOx-to-CO2 emission ratio by calculating
the NO2-to-CO2 ratios r(x) at multiple transects along matching
NO2 and CO2 plumes (see Section 3.3). We calculate r(x) using
linear fit between NO2 and CO2 columns at each transect. We
then fit an exponential decay function (similarly to Kuhlmann
et al., 2021):

r x( ) � r0 exp
−x

u × τ
( ), (6)

where r0 is the estimated NOx-to-CO2 emission ratio, u is the
mean wind speed and τ is the lifetime. As noted by Kuhlmann
et al. (2021), it is not always feasible to fit the exponential decay to
the data if the number of transect is too small. In those cases, we
take into account the value of the ratio at the transects near the
source. This method is adapted from the approach proposed by
Hakkarainen et al. (2021), where the NOx-to-CO2 emission ratios
were derived from TROPOMI NO2 and OCO-2 CO2

observations at Matimba Power Station in South Africa. In
that case, due to the narrow swath of OCO-2 observations,
one cross-section per plume was used. If the entire plume is
visible from the satellite observations, as for several orbits in the
synthetic CO2M observations, we can calculate the ratios at
multiple transects along the plume.

2.6 Denoising
The computation of the divergence is sensitive to systematic and
random errors (see, e.g., Beirle et al., 2021). In this synthetic case
study, particular errors are the single-sounding precision errors
added to the data (see Section 2.1), and errors in the estimated
effective wind fields. The temporal averaging of the divergence
computations partially overcomes the influence of random errors,
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and the averaging increases the signal-to-noise ratio of the
divergence map. However, we can additionally “denoise” the
total vertical column density fields using computer vision
techniques (Koene et al., 2021). In this study we analyse two
denoising methods that are described shortly below.

A relatively simple technique for denoising is a mean filter.
Here, we spatially convolve a gridded total vertical column density
image V(x, y, t) with anN ×N kernelKN2 whose elements have the
value 1/N2. For example, a convolution with the kernel

K9 x, y( ) � 1
9

1 1 1
1 1 1
1 1 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (7)

effectively computes a filtered image based on the average of 3 × 3
regions in V(x, y, t). The expectation is that the mean filter
suppresses random noise, varying from pixel to pixel. On the
other hand, some signal will be lost in the process. In this paper,
we refer to the filter of Eq. 7 as “mean filter 9.” We additionally
considered the 5 × 5 kernel K25 as “mean filter 25.”

An alternative denoising technique we applied exploits the
colocated CO2 and NO2 observations in the synthetic CO2

images. It is based on a method called block-matching and 3D
filtering, or BM3D (Dabov et al., 2007), which performs around
the upper bound of possible performance that a denoising
technique can achieve (Levin and Nadler, 2011). In short,
BM3D works by denoising an image patch-wise in two steps.
First, 3D blocks are formed of similar-looking patches, which are
collaboratively denoised using a hard thresholding step, and the
collaboratively denoised patches are re-aggregated into an initial
estimate of the denoised image. The second step takes place the
same way, except that the hard thresholding is replaced with a
Wiener filter based on the initially denoised image, with respect to
a user-specified denoising level σBM3D. We refer to Dabov et al.
(2007) and Lebrun (2012) for further details. A notable extension
is that we set up BM3D to consider the joint information present
in CO2 and NO2 images, by normalizing the two images to the
same dynamic range and then linearly adding 0.75 times the
scaled CO2 image with 0.25 times the scaled NO2 image, to form a
joint image. The locations of the selected similar-looking patches
were established in this joint image; while the denoising took
place for both this joint image and an image consisting of
0.75 times the CO2 image minus 0.25 times the scaled NO2

image. After adding the two denoised images and rescaling, we
obtain a new CO2 image, while the filtering was helped by the
higher signal-to-noise ratio of the NO2 images during the patch
selection and denoising steps. In this paper, we refer to “BM3D
σBM3D,” for example “BM3D 5,” to indicate denoised images
using a specified noise level in the Wiener filter.

3 RESULTS

3.1 Divergence Method
Figure 2 illustrates the CO2 divergence calculated from the
CO2 synthetic observations for the year 2015 simulated by the
COSMO-GHG model in an optimal case without presence of
noise or background field. We consider model simulations at

11:00 UTC assuming clear-sky conditions gridded at 0.05°×0.05°

resolution. The largest point sources (Table 1), such as the individual
power stations (Boxberg, Jänschwalde, Lippendorf, Schwarze
Pumpe, and Turów) and the city of Berlin are visible as
enhancements in the divergence map.

In practice, the situation is more complicated than illustrated
in Figure 2 as several aspects affect the divergence calculation.
For example, the amount of available data can be reduced due to
the limited coverage of satellite observations and the persistence
of cloudy conditions. The effect of clouds is more restricting for
CO2, as compared to NOx, since almost completely clear sky
conditions are needed for a successful CO2 retrieval, while
partially cloudy conditions (cloud fraction smaller than 30%)
are considered suitable for reliable NO2 retrievals. In addition, the
calculation of the CO2 divergence requires removing the
background (about 400 ppm), with the anthropogenic
enhancements in the order of 1 ppm. The highest challenge is
posed by the instrument noise.

To mimic the analysis of satellite observations we consider
different constellation options from the SMARTCARB dataset.
The divergence is calculated for the full year 2015 with data
filtering for cloud free conditions. Supplementary Figure S2 in
the supplement shows the CO2 divergence calculated for
constellations with one up to six satellites. For the remaining
part of this paper, we will use the setup with two satellites shown
in Supplementary Figure S2B.

Figure 3 illustrates the divergence calculated with different
model setups. Figure 3A shows the NOx divergence calculated
from simulations with added noise (standard deviation 1.5 × 1015

molec./cm2), without any background removal and with cloud
fraction smaller than 0.3. Figure 3B shows the CO2 divergence
based on simulations without presence of background or noise,
and with cloud fraction limit 0.01. Both NOx and CO2 divergence
maps have similar spatial features, with enhancements close to
the main emission sources, but the CO2 fields are noisier and less
sharp, as expected due to the longer lifetime and the more
restrictive cloud fraction limit which reduces the number of
available observations (Supplementary Figure S3 in the
supplement). Figure 3C shows the CO2 divergence map after
adding artificial noise (standard deviation 0.5 ppm) to the
simulations. Figure 3D shows the CO2 divergence after adding
the simulated background and subsequently removing it by
calculating the anomaly as the difference from the background
(i.e. the median for each orbit over the area covered in Figure 3).
The noise addition has much larger effect to the divergence
patterns than the background addition (and removal).
Figure 3E combines Figures 3C,D, including both the noise
and the background (and its removal). Finally, in Figure 3F the
XCO2 data are denoised by using a mean filter with constant 5-
by-5 kernel before removing the background and calculating the
CO2 divergence. After denoising the data, the CO2 divergence
patterns in Figure 3F are similar to Figure 3B and Figure 3D.
The effect of denoising is further discussed in Section 3.2. To
calculate emission estimates for individual point sources we apply
the peak fitting approach described in Section 2.3. For CO2 we
use the divergence map shown in Figure 3F, that includes the
denoised data (with background removed) that would be
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available from a two-satellite constellation. We are able to
calculate the CO2 emission values for all the major sources in
the area except for Turów Power Station, which does not appear
as a point source in Figure 3F. For NOx we fit the peaks from the
emission map given as the sum of the divergence and the sink
terms (Supplementary Figure S4).

Figure 4 shows the comparison between the NOx and CO2

emissions estimates derived using peak fitting and the annual
mean of the emissions at 11 UTC used as input in the model
simulations for each source (orange symbols). The emission
estimates are also presented in Table 2. The emission values
sit generally close to the 1:1 line, with high correlation
(correlation coefficients R = 0.94 and R = 0.97 for NOx and
CO2, respectively) between our estimates and the 11 UTC
emissions used as model input. Some differences can be
related to the differences in emissions during different seasons
which might be not homogeneously sampled.

To study the effect of the instrumental noise on the emission
estimates, we sampled different realisations of the random noise
for creating the observation error. The effect of the noise is rather
small for the NOx emission estimates, while it is more
pronounced for CO2, as shown in Figure 3. The different
emission estimates (after denoising) are presented as grey
symbols in Figure 4. The largest variability due to different
random noise can be found for the city of Berlin (emission
estimates ranging from 36 to 112 kton/day) and for Schwarze
Pumpe power station (5–65 kton/day). Supplementary Figure S5
in the supplement shows two examples of the CO2 divergence
map with two different sets of random noise corresponding to
very different outcomes in terms of emission estimates.
Supplementary Figure S5A corresponds to CO2 emission

estimates of 36 kton/day for Berlin and 65 kton/day for
Schwarze Pumpe, while in Supplementary Figure S5B
Schwarze Pumpe CO2 emissions are much smaller (5 kton/
day) and the Berlin CO2 emissions are about 85 kton/day.

The error bars in Figure 4 correspond to the fitting error
(standard deviation of the posterior distribution) calculated using
the MCMC sampling. This fitting error is only a statistical error
estimate that describes how well the 2D Gaussian model fits the
divergence/emission fields. Thus, the fitting error is likely to
underestimate the true error as it does not include any
systematic component.

The NOx emissions can be also estimated by using the EMG
method described in Section 2.4. This method is suitable for
relatively isolated sources and it can be challenging to apply in the
presence of strong neighboring sources. Dedicated algorithms
have been developed to deal with this issue (Fioletov et al., 2017;
Verstraeten et al., 2018; Liu et al., 2022). Here we apply the wind
rotation technique around each source (Fioletov et al., 2015) and
calculate the NOx line densities. We obtain a successful fit to
estimate the emissions only for the city of Berlin and Turów
Power Station, which are both relatively distant from the other
sources in the area of study. The resulting NOx emission estimates
for Berlin and Turów are 64.6 ± 3.5 ton/day and 38.5 ± 4.3 ton/
day, respectively (Figure 4, black symbols). The estimates based
on EMG fitting agree within the uncertainties with the emission
estimates obtained from peak fitting from the emission maps. We
also estimate the NOx lifetime for Berlin and Turów as 1.9 ± 0.2 h
and 1.7 ± 0.3 h, respectively. These values are about 50% lower
than the lifetime used in the SMARTCARB simulations (4 h). The
underestimation of NOx lifetime using the wind rotation and
EMG approach was also found by de Foy et al. (2014).

FIGURE 2 |CO2 divergence calculated from the COSMO-GHGmodel simulations. Only anthropogenic enhancements are considered. Positive values correspond
to strong emissions sources such as power stations (Boxberg, Jänschwalde, Lippendorf, Schwarze Pumpe, and Turówmarked with B, J, L, SP, and T, respectively) and
the city of Berlin.
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3.2 Effect of Denoising
As shown in Figure 3, denoising is an essential step when
estimating the emissions from the CO2 divergence fields. In
Figure 4, we used a simple denoising based on a mean filter
with constant 5-by-5 kernel. To further analyze the effect of
denoising, we test also the BM3D method with various denoising
parameters (σBM3D = 4, 8, 10, 15, 30) as well as themean filter with
3-by-3 kernel before the calculation of the CO2 divergence
(Figure 5). As expected, increasing the denoising parameter
σBM3D in the BM3D method leads to increasingly smoother
divergence fields. Overall, the denoising with σBM3D = 15
(Figure 5D) produces similar patterns than the mean filter 25
(Figure 3F). The mean filter 9 (with 3-by-3 kernel, Figure 5F)
remains quite noisy.

Figure 6 shows the comparison between the CO2 emission
estimates from peak fitting and the emissions at 11 UTC used as
input in the model simulations with different setups for
denoising. Here we use the same realization of the
instrumental noise to test the effect of different denoising
approaches. The emission estimates for Berlin show quite a
large spread, while for the Schwarze Pumpe power station the
spread is relatively smaller excluding one outlier (BM3D with
σBM3D = 30). The correlation between the CO2 emissions
estimates from peak fitting and the assumed emissions is

generally high, but the overestimation of the emissions for
Berlin causes the correlation coefficients to become lower
when the BM3D denoising method is applied. Figure 6 also
show the CO2 emission estimates in the cases where no noise and
no CO2 background are considered as well as the case where no
denoising is applied.

3.3 Source-Specific Emission Ratios
As alternative to the divergence approach, we also derive the CO2

emissions by converting NOx into CO2 emissions, using a source-
specific NOx-to-CO2 emission ratio calculated as described in
Section 2.5. For each emission source listed in Table 1 we plot all
the available overpasses from the SMARTCARB dataset and
calculate the cross-sectional NO2-to-CO2 ratios along each
observable plume (Hakkarainen et al., 2019, 2021). The ratios
are calculated over several (0.1 degrees wide) transects
perpendicular to the plume direction (white lines in Figure 7),
located at regular distance downwind from the source (0.025
degrees intervals starting at 0.05 degrees from the source). We
then fit the NO2-to-CO2 ratios using the exponential decay
function (Eq. 6) to derive the NOx-to-CO2 emission ratio at
the source as described in Section 2.5. Figure 7 shows an example
of this approach for the Jänschwalde power station. In general,
fitting an exponential decay to noisy data is challenging, and the

FIGURE 3 | Divergence calculated with various setups. (A) shows the NOx divergence and (B–F) the CO2 divergence. The different setups are indicated in the title
of each panel.
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estimates are highly influenced by the values near the emission
source. This could potentially be an issue with real NO2 satellite
observations, if the NO emissions are not yet fully oxidised near
the source.

Figure 8 includes the mean NOx-to-CO2 emission ratios
obtained averaging the results from multiple plumes for each
power station. In all cases, the true emission value is within the
one-sigma error. The main challenge of this approach is the
limited number of plumes available to derive the ratios. The
estimation process was the most robust for the Jänschwalde
power station, which has the largest CO2 emissions in the area
of study and several (13) detectable plumes available for the
calculation of the ratios. On the other hand, we were able to
identify only four plumes for Turów power station, which showed
large variability, especially due to the low CO2 signal compared to
NO2. Turów has the largest NOx-to-CO2 emission ratio, which

appears to be captured by our estimates despite the large
variability. We attempted a similar approach also for the city
of Berlin, but it was difficult do identify clear CO2 emission
plumes from noisy simulations mainly because Berlin has to be
considered as an area source, rather than a point source, and our
results remained inconclusive.

Table 2 summarizes the NOx and CO2 emission values
presented in Figure 3 and the mean NOx-to-CO2 emission
ratios from Figure 8. The last column, includes the CO2

emissions when the NOx emissions obtained from peak fitting
are converted into CO2 emissions using the source-specific NOx-
to-CO2 emission ratios. Overall, the results showed in Table 2 are
mostly in agreement (within the uncertainties) with the emission
values used as input in the simulations (Table 1). We note that
systematic errors are not taken into account in the uncertainties.
If the source-specific NOx-to-CO2 emission ratios are obtained

FIGURE 4 | Source-specific emissions for NOx (A) and CO2 (B). Orange symbols indicate the emissions calculated from the CO2 divergence map shown in
Figure 3F (denoised and with background removed) and from the NOx emission map shown in the Supplement (Supplementary Figure S4) using peak fitting. Grey
symbols indicate emission values calculated with different realization of the measurement noise. Black markers show the NOx emissions derived from the EMG fit for the
Turów power station and the city of Berlin.

TABLE 2 | Summary of the estimated emissions.

Place NOx (div)
‡ NOx (EMG)‡ CO2 (div)† NOx/CO2

+ CO2 (from
NOx div)

†

Berlin 61.2 ± 3.9 64.6 ± 3.5 65.8 ± 9.5 — —

Boxberg 39.1 ± 2.9 — 54.7 ± 6.3 0.83 ± 0.25 47.1 ± 14.7
Jänschwalde 61.2 ± 4.2 — 109 ± 10.1 0.78 ± 0.10 77.9 ± 11.2
Lippendorf 29.5 ± 1.8 — 48.8 ± 5.5 0.88 ± 0.18 33.4 ± 7.1
Schwarze Pumpe 17.2 ± 2.0 — 21.6 ± 5.8 0.77 ± 0.14 22.3 ± 4.9
Turów 34.2 ± 3.1 38.5 ± 4.3 — 1.26 ± 0.36 27.2 ± 8.1

†kilotons per day.
‡tons per day.
+value × 10–3.

Frontiers in Remote Sensing | www.frontiersin.org July 2022 | Volume 3 | Article 8787318

Hakkarainen et al. Space-Based CO2 and NOx Emissions

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


with the same dataset as the NOx emissions, possible biases in the
NO2 observations or the assumed constant NOx-to-NO2 ratio
cancels out when the estimated ratios are applied to convert the
NOx emissions to CO2 emissions.

4 DISCUSSION

We showed how the divergence method developed for estimating
NOx emissions from satellite observations can be applied to CO2

retrievals that will become available from the upcoming CO2M
mission. There are several aspects that make the analysis of the
CO2 divergence more difficult than for NOx. For example:

1) CO2 has a long atmospheric lifetime which complicates the
analysis and makes the divergence fields more blurry and
causes mixing of the plume signal;

2) CO2 has a large atmospheric background (of about 400 ppm,
compared to the enhancements of about 1–3 ppm) that has to
be removed before the divergence method can be applied;

3) CO2 has a larger variety of sources and sinks;
4) The effect of clouds is more restricting for CO2, as compared

to NOx, since almost completely clear sky conditions are
needed for a successful CO2 retrieval;

FIGURE 5 | CO2 divergence calculated with different denoising methods. The different setups are indicated in the title of each panel. We tested the BM3D method
with various denoising parameters (σBM3D = 4, 8, 10, 15, 30) as well as the mean filter with 3-by-3 kernel. See also Figure 3 for comparison.

FIGURE 6 | Source-specific CO2 emissions calculated with different
denoising methods (shown as different colors). See Figures 3, 5 for the
corresponding divergence maps.
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5) The CO2 noise levels are large (0.5–1 ppm) compared to the
anthropogenic enhancements and a denoising method has to
be applied before the divergence can be calculated.

On the other hand, due to the long lifetime of CO2, the sink
term in Eq. 1 does not need to be accounted for and no
assumptions on the lifetime need to be made.

The approach presented here can be extended to other regions
or at global scale, which would require different considerations
for the choice of the background. The source identification and
peak fitting procedure can also be automated as described in
previous studies (Fioletov et al., 2016; Beirle et al., 2021; Finch
et al., 2022; Lauvaux et al., 2022). A different formulation of the
divergence method has been also applied to TROPOMI methane
observations (Liu et al., 2021). In principle, the divergence
method could be applied to high-resolution retrievals that will

become available from the upcoming MethaneSat and
CarbonMapper instruments, assuming persistent emissions
and sufficient spatio-temporal coverage. On the other hand,
such high-resolution observations already have the capability
to detect anthropogenic enhancements and methods based on
the analysis of individual plumes might be more suitable for
estimating emissions.

Several studies in the literature have suggested the use of co-
emitted NO2 observations to guide the detection of CO2 emission
plumes (e.g., Reuter et al., 2019; Kuhlmann et al., 2021) or to
convert NOx to CO2 emissions using NOx-to-CO2 emission ratios
(e.g., Liu et al., 2020; Hakkarainen et al., 2021). In this work we
tested the latter approach and we were able to compute the
source-specific NOx-to-CO2 emission ratio for all the power
stations analyzed, but not for the city of Berlin. This allowed
us to estimate CO2 emissions also for the Turów power station,

FIGURE 7 | Example of the calculation of source-specific NOx-to-CO2 emission ratio for Jänschwalde power station on 5 June 2015. Panel (A) and (B) show the
NO2 and CO2 plumes. Panel (C) shows the cross-sectional NO2-to-CO2 ratio calculated over several transects [white lines in panels (A) and (B)], located at regular
distance downwind from the source. Black symbols and line indicate the ratios and the corresponding exponential decay, respectively.

Frontiers in Remote Sensing | www.frontiersin.org July 2022 | Volume 3 | Article 87873110

Hakkarainen et al. Space-Based CO2 and NOx Emissions

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


while it was not possible with the divergence method and peak
fitting. In the case of Turów, the NOx-to-CO2 emission ratio was
however based on a limited number (4) of plumes which
produces a larger statistical uncertainty. In general, analysing
NOx-to-CO2 emission ratios is quite challenging due to the large
uncertainties, as also noted by Kuhlmann et al. (2021). Additional
challenges are posed by the fact that the NOx-to-CO2 emission
ratios might not be constant in time. In general, the NOx

emissions are decreasing faster than the CO2 emissions due to
the implementation of cleaner technologies (in terms of NOx

emissions), corresponding to decreasing NOx-to-CO2 emission
ratios. This can be an issue also when considering emission ratios
from slowly updating emission inventories. Furthermore, even
when the NOx emissions can be successfully estimated from (also
quite small) emission sources, it can be challenging to obtain the
NOx-to-CO2 emission ratios from the same space-based
observations due to lack of detectable matching NO2 and CO2

plumes.
The emissions estimated from individual plumes correspond

to the specific time at which the plume is observed and a factor
accounting for changing conditions (such as the seasonal cycle)
should be taken into account to derive annual values (Kuhlmann
et al., 2020a, 2021). In principle, approaches based on temporal
averaging like the divergence method do represent the mean
conditions over a defined period of time, but the available
observations might be scarce or unevenly distributed
temporally and spatially. In any case, satellite observations
from passive instruments will correspond to clear-sky
conditions at the time of the satellite overpass, which means
that few observations will be available under persistent cloudy
conditions (e.g., in the winter), and no observations will be
available during night-time.

An advantage of the divergence method is that it enables the
detection of relatively small emission sources that could not be

easily detected using individual plumes. In addition, the
divergence method allows us to distinguish nearby sources
that would be challenging to analyse using a simple method
based on EMG fitting. On the other hand, a longer averaging
period is required to detect a clear enhancement and to obtain a
successful emission estimate from the divergence mean fields, as
compared to the EMG fitting.

5 SUMMARY

In this paper we demonstrated how anthropogenic CO2

emissions may be estimated from (synthetic) satellite
observations using the divergence method, originally
developed for short-lived gases. We found that the divergence
method applied to the CO2M synthetic observations provided
robust estimates of the NOx emissions for non-isolated sources
(as highlighted by Beirle et al., 2019, 2021), even though the swath
of the upcoming CO2M satellites will be much narrower
(~250 km) than the current TROPOMI swath (~2,400 km). In
general, the CO2M mission requirements are not dictated by
applications based on temporal averaging, but are mostly
designed to detect individual emission plumes. We found that
the estimated CO2 emissions are in agreement with the expected
values, although with larger uncertainties compared to NOx.

From a technical point of view, denoising the CO2

observations before calculating the divergence is necessary to
identify the emission sources from the divergence maps. The
source-specific CO2 emission estimates can vary depending on
the denoising method applied. We noted that calculating the
divergence before averaging rather than the reverse (as done in
previous studies), reduces the effect of missing data and produces
less noisy spatial patterns. The NOx emission estimates derived by
fitting the exponentially-modified Gaussian function are in
excellent agreement with the divergence method, although the
NOx lifetime is underestimated (about 50% lower) as compared
to the expected lifetime of 4 hours used in the SMARTCARB
simulations. Overall, the divergence method offers a valuable tool
for estimating CO2 emissions from point sources, along with
approaches based on inverse modeling and individual plume
analysis (e.g., mass balance).
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