57 research outputs found

    The influence of protein corona on Graphene Oxide: implications for biomedical theranostics

    Get PDF
    : Graphene-based nanomaterials have attracted significant attention in the field of nanomedicine due to their unique atomic arrangement which allows for manifold applications. However, their inherent high hydrophobicity poses challenges in biological systems, thereby limiting their usage in biomedical areas. To address this limitation, one approach involves introducing oxygen functional groups on graphene surfaces, resulting in the formation of graphene oxide (GO). This modification enables improved dispersion, enhanced stability, reduced toxicity, and tunable surface properties. In this review, we aim to explore the interactions between GO and the biological fluids in the context of theranostics, shedding light on the formation of the "protein corona" (PC) i.e., the protein-enriched layer that formed around nanosystems when exposed to blood. The presence of the PC alters the surface properties and biological identity of GO, thus influencing its behavior and performance in various applications. By investigating this phenomenon, we gain insights into the bio-nano interactions that occur and their biological implications for different intents such as nucleic acid and drug delivery, active cell targeting, and modulation of cell signalling pathways. Additionally, we discuss diagnostic applications utilizing biocoronated GO and personalized PC analysis, with a particular focus on the detection of cancer biomarkers. By exploring these cutting-edge advancements, this comprehensive review provides valuable insights into the rapidly evolving field of GO-based nanomedicine for theranostic applications

    Protein corona-enabled serological tests for early stage cancer detection

    Get PDF
    Abstract Early stage cancer detection is a major issue in current medicine. In recent years, nanotechnology is providing new alternatives for early diagnosis. Upon exposure to human plasma, several nanoparticle types (e.g. gold nanoparticles) are surrounded by a protein layer referred to as protein corona (PC). The PC changes the original identity of the nanoparticle conferring a new biological character. It is now accepted that slight variations in the composition of a protein source significantly varies the PC composition. Thus, nanomaterials incubated with plasma proteins of individuals with different physiological conditions generate PCs with different compositions. This gives rise to the new concept of personalised PC. Therefore, since protein patterns of subjects affected by certain pathologies differ from those of healthy ones, diagnostic technologies based on the evaluation of personalised PC could represent a fascinating opportunity for early disease detection. Herein, we review the concept of personalised PC along with recent advances on the topic, giving an overview of some innovative analytical approaches for early stage cancer detection

    Mechanistic insights into the release of doxorubicin from graphene oxide in cancer cells

    Get PDF
    Liposomal doxorubicin (L-DOX) is a popular drug formulation for the treatment of several cancer types (e.g., recurrent ovarian cancer, metastatic breast cancer, multiple myeloma, etc.), but poor nuclear internalization has hampered its clinical applicability so far. Therefore, novel drug-delivery nanosystems are actively researched in cancer chemotherapy. Here we demonstrate that DOX-loaded graphene oxide (GO), GO-DOX, exhibits much higher anticancer efficacy as compared to its L-DOX counterpart if administered to cellular models of breast cancer. Then, by a combination of live-cell confocal imaging and fluorescence lifetime imaging microscopy (FLIM), we suggest that GO-DOX may realize its superior performances by inducing massive intracellular DOX release (and its subsequent nuclear accumulation) upon binding to the cell plasma membrane. Reported results lay the foundation for future exploitation of these new adducts as high-performance nanochemotherapeutic agents

    Inhibiting the growth of 3D brain cancer models with bio-coronated liposomal temozolomide

    Get PDF
    Nanoparticles (NPs) have emerged as an effective means to deliver anticancer drugs into the brain. Among various forms of NPs, liposomal temozolomide (TMZ) is the drug-of-choice for the treatment and management of brain tumours, but its therapeutic benefit is suboptimal. Although many possible reasons may account for the compromised therapeutic efficacy, the inefficient tumour penetration of liposomal TMZ can be a vital obstacle. Recently, the protein corona, i.e., the layer of plasma proteins that surround NPs after exposure to human plasma, has emerged as an endogenous trigger that mostly controls their anticancer efficacy. Exposition of particular biomolecules from the corona referred to as protein corona fingerprints (PCFs) may facilitate interactions with specific receptors of target cells, thus, promoting efficient internalization. In this work, we have synthesized a set of four TMZ-encapsulating nanomedicines made of four cationic liposome (CL) formulations with systematic changes in lipid composition and physical−chemical properties. We have demonstrated that precoating liposomal TMZ with a protein corona made of human plasma proteins can increase drug penetration in a 3D brain cancer model derived from U87 human glioblastoma multiforme cell line leading to marked inhibition of tumour growth. On the other side, by fine-tuning corona composition we have also provided experimental evidence of a non-unique effect of the corona on the tumour growth for all the complexes investigated, thus, clarifying that certain PCFs (i.e., APO-B and APO-E) enable favoured interactions with specific receptors of brain cancer cells. Reported results open new perspectives into the development of corona-coated liposomal drugs with enhanced tumour penetration and antitumour efficacy

    Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles

    Get PDF
    PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development

    Characterization of a Human Cell Line Stably Over-Expressing the Candidate Oncogene, Dual Specificity Phosphatase 12

    Get PDF
    Analysis of chromosomal rearrangements within primary tumors has been influential in the identification of novel oncogenes. Identification of the "driver" gene(s) within cancer-derived amplicons is, however, hampered by the fact that most amplicons contain many gene products. Amplification of 1q21-1q23 is strongly associated with liposarcomas and microarray-based comparative genomic hybridization narrowed down the likely candidate oncogenes to two: the activating transcription factor 6 (atf6) and the dual specificity phosphatase 12 (dusp12). While atf6 is an established transcriptional regulator of the unfolded protein response, the potential role of dusp12 in cancer remains uncharacterized.To evaluate the oncogenic potential of dusp12, we established stable cell lines that ectopically over-express dusp12 in isolation and determined whether this cell line acquired properties frequently associated with transformed cells. Here, we demonstrate that cells over-expressing dusp12 display increased cell motility and resistance to apoptosis. Additionally, over-expression of dusp12 promoted increased expression of the c-met proto-oncogene and the collagen and laminin receptor intergrin alpha 1 (itga1) which is implicated in metastasis.Collectively, these results suggest that dusp12 is oncologically relevant and exposes a potential association between dusp12 and established oncogenes that could be therapeutically targeted

    The Silent Epidemic of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Children and Adolescents in Italy During the COVID-19 Pandemic in 2020

    Get PDF
    To compare the frequency of diabetic ketoacidosis (DKA) at diagnosis of type 1 diabetes in Italy during the COVID-19 pandemic in 2020 with the frequency of DKA during 2017-2019

    Crowdsourcing hypothesis tests: Making transparent how design choices shape research results

    Get PDF
    To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
    corecore