90 research outputs found
Brown Treesnake Mortality After Aerial Application of Toxic Baits
Quantitative evaluation of control tools for managing invasive species is necessary to assess overall effectiveness and individual variation in treatment susceptibility. Invasive brown treesnakes (Boiga irregularis) on Guam have caused severe ecological and economic effects, pose a risk of accidental introduction to other islands, and are the greatest impediment to the reestablishment of extirpated native fauna. An aerial delivery system for rodent‐based toxic baits can reduce brown treesnake abundance and heterogeneity among individuals may influence bait attraction or toxicant susceptibility. Previous baiting trials have either been simulated aerial treatments or relied on slightly different bait capsule compositions and the results of aerial delivery of toxic baits under operational conditions may not be directly comparable. We monitored 30 radio‐tagged adult snakes (990–1,265 mm snout‐vent length) during an aerial baiting operation in a 55‐ha area using transmitters equipped with accelerometers and receivers programed to display a status code indicating mortality if a snake failed to move for \u3e24 hours. We used known‐fate models to estimate mortality and evaluate a priori hypotheses explaining differences in mortality based on size, sex, and treatment effects. Eleven radio‐tagged snakes died in the aerial baiting treatment period (0.37, 95% CI=0.21–0.55) and no individuals (0.00, 95% CI=0.00–0.04) died during the non‐treatment period. Our data provide strong evidence for an additive size‐based treatment effect on mortality, with smaller adults (0.59, 95% CI=0.35–0.80) exhibiting higher mortality than larger snakes (0.14, 95% CI=0.02–0.37) but did not support a sex effect on mortality. The high mortality of snakes during the treatment period indicates that aerial baiting can reduce brown treesnake abundance, but further refinement or use in combination with other removal tools may be necessary to overcome size‐based differences in susceptibility and achieve eradication. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society
Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope
We report the first detection of the gravitational lensing of the cosmic
microwave background through a measurement of the four-point correlation
function in the temperature maps made by the Atacama Cosmology Telescope. We
verify our detection by calculating the levels of potential contaminants and
performing a number of null tests. The resulting convergence power spectrum at
2-degree angular scales measures the amplitude of matter density fluctuations
on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The
measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology
predictions. Since the amplitude of the convergence power spectrum scales as
the square of the amplitude of the density fluctuations, the 4-sigma detection
of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version
accepted by Physical Review Letters. Likelihood code can be downloaded from
http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements
For the first time, measurements of the cosmic microwave background radiation
(CMB) alone favor cosmologies with dark energy over models without dark
energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing
deflection power spectrum from the Atacama Cosmology Telescope with temperature
and polarization power spectra from the Wilkinson Microwave Anisotropy Probe.
The lensing data break the geometric degeneracy of different cosmological
models with similar CMB temperature power spectra. Our CMB-only measurement of
the dark energy density confirms other measurements from
supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates
the power of CMB lensing as a new cosmological tool.Comment: 4 pages, 3 figures; replaced with version accepted by Physical Review
Letters, added sentence on models with non-standard primordial power spectr
The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect
We present optical and X-ray properties for the first confirmed galaxy
cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over
455 square degrees of sky made with the Atacama Cosmology Telescope. These
maps, coupled with multi-band imaging on 4-meter-class optical telescopes, have
yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066.
Of these 23 clusters, 10 are newly discovered. The selection of this sample is
approximately mass limited and essentially independent of redshift. We provide
optical positions, images, redshifts and X-ray fluxes and luminosities for the
full sample, and X-ray temperatures of an important subset. The mass limit of
the full sample is around 8e14 Msun, with a number distribution that peaks
around a redshift of 0.4. For the 10 highest significance SZE-selected cluster
candidates, all of which are optically confirmed, the mass threshold is 1e15
Msun and the redshift range is 0.167 to 1.066. Archival observations from
Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that
are broadly consistent with this mass threshold. Our optical follow-up
procedure also allowed us to assess the purity of the ACT cluster sample.
Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise
ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported
sample represents one of the largest SZE-selected sample of massive clusters
over all redshifts within a cosmologically-significant survey volume, which
will enable cosmological studies as well as future studies on the evolution,
morphology, and stellar populations in the most massive clusters in the
Universe.Comment: 20 pages, 15 figures, 6 tables. Accepted for publication in ApJ.
Higher resolution figures available at:
http://peumo.rutgers.edu/~felipe/e-prints
The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey
We report on extragalactic sources detected in a 455 square-degree map of the
southern sky made with data at a frequency of 148 GHz from the Atacama
Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources
with flux densities spanning two orders of magnitude: from 15 to 1500 mJy.
Comparison to other catalogs shows that 98% of the ACT detections correspond to
sources detected at lower radio frequencies. Three of the sources appear to be
associated with the brightest cluster galaxies of low redshift X-ray selected
galaxy clusters. Estimates of the radio to mm-wave spectral indices and
differential counts of the sources further bolster the hypothesis that they are
nearly all radio sources, and that their emission is not dominated by
re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with
complete cross-identifications from the Australia Telescope 20 GHz survey, we
observe an average steepening of the spectra between 5, 20, and 148 GHz with
median spectral indices of , , and . When the
measured spectral indices are taken into account, the 148 GHz differential
source counts are consistent with previous measurements at 30 GHz in the
context of a source count model dominated by radio sources. Extrapolating with
an appropriately rescaled model for the radio source counts, the Poisson
contribution to the spatial power spectrum from synchrotron-dominated sources
with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times
10^{-6} \micro\kelvin^2.Comment: Accepted to Ap
The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey
We present measurements of the cosmic microwave background (CMB) power
spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as
well as the cross-frequency spectrum between the two channels. Our results
clearly show the second through the seventh acoustic peaks in the CMB power
spectrum. The measurements of these higher-order peaks provide an additional
test of the {\Lambda}CDM cosmological model. At l > 3000, we detect power in
excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 <
l < 3000, we find evidence for gravitational lensing of the CMB in the power
spectrum at the 2.8{\sigma} level. We also detect a low level of Galactic dust
in our maps, which demonstrates that we can recover known faint, diffuse
signals.Comment: 19 pages, 13 figures. Submitted to ApJ. This paper is a companion to
Hajian et al. (2010) and Dunkley et al. (2010
The Atacama Cosmology Telescope: Data Characterization and Map Making
We present a description of the data reduction and mapmaking pipeline used
for the 2008 observing season of the Atacama Cosmology Telescope (ACT). The
data presented here at 148 GHz represent 12% of the 90 TB collected by ACT from
2007 to 2010. In 2008 we observed for 136 days, producing a total of 1423 hours
of data (11 TB for the 148 GHz band only), with a daily average of 10.5 hours
of observation. From these, 1085 hours were devoted to a 850 deg^2 stripe (11.2
hours by 9.1 deg) centered on a declination of -52.7 deg, while 175 hours were
devoted to a 280 deg^2 stripe (4.5 hours by 4.8 deg) centered at the celestial
equator. We discuss sources of statistical and systematic noise, calibration,
telescope pointing, and data selection. Out of 1260 survey hours and 1024
detectors per array, 816 hours and 593 effective detectors remain after data
selection for this frequency band, yielding a 38% survey efficiency. The total
sensitivity in 2008, determined from the noise level between 5 Hz and 20 Hz in
the time-ordered data stream (TOD), is 32 micro-Kelvin sqrt{s} in CMB units.
Atmospheric brightness fluctuations constitute the main contaminant in the data
and dominate the detector noise covariance at low frequencies in the TOD. The
maps were made by solving the least-squares problem using the Preconditioned
Conjugate Gradient method, incorporating the details of the detector and noise
correlations. Cross-correlation with WMAP sky maps, as well as analysis from
simulations, reveal that our maps are unbiased at multipoles ell > 300. This
paper accompanies the public release of the 148 GHz southern stripe maps from
2008. The techniques described here will be applied to future maps and data
releases.Comment: 20 pages, 18 figures, 6 tables, an ACT Collaboration pape
- …