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Brown Treesnake Mortality After Aerial
Application of Toxic Baits

SCOTT M. GOETZ ,1,2,3 U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, 233 Pangelinan Way, Barrigada,
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ABSTRACT Quantitative evaluation of control tools for managing invasive species is necessary to assess
overall effectiveness and individual variation in treatment susceptibility. Invasive brown treesnakes (Boiga
irregularis) on Guam have caused severe ecological and economic effects, pose a risk of accidental in-
troduction to other islands, and are the greatest impediment to the reestablishment of extirpated native
fauna. An aerial delivery system for rodent‐based toxic baits can reduce brown treesnake abundance and
heterogeneity among individuals may influence bait attraction or toxicant susceptibility. Previous baiting
trials have either been simulated aerial treatments or relied on slightly different bait capsule compositions
and the results of aerial delivery of toxic baits under operational conditions may not be directly comparable.
We monitored 30 radio‐tagged adult snakes (990–1,265mm snout‐vent length) during an aerial baiting
operation in a 55‐ha area using transmitters equipped with accelerometers and receivers programed to
display a status code indicating mortality if a snake failed to move for >24 hours. We used known‐fate
models to estimate mortality and evaluate a priori hypotheses explaining differences in mortality based
on size, sex, and treatment effects. Eleven radio‐tagged snakes died in the aerial baiting treatment period
(0.37, 95% CI= 0.21–0.55) and no individuals (0.00, 95% CI= 0.00–0.04) died during the non‐treatment
period. Our data provide strong evidence for an additive size‐based treatment effect on mortality,
with smaller adults (0.59, 95%CI= 0.35–0.80) exhibiting higher mortality than larger snakes (0.14,
95%CI= 0.02–0.37) but did not support a sex effect on mortality. The high mortality of snakes during the
treatment period indicates that aerial baiting can reduce brown treesnake abundance, but further refinement
or use in combination with other removal tools may be necessary to overcome size‐based differences in
susceptibility and achieve eradication. © 2021 The Authors. The Journal of Wildlife Management published
by Wiley Periodicals LLC on behalf of The Wildlife Society.

KEY WORDS Boiga irregularis, Guam, invasive species, known fate models, snakes, survival estimate.

Invasive species rank as one of the greatest threats to global
biodiversity (Wilcove et al. 1998) and the need to remove

nonnatives from the landscape influences technological
innovation of control measures. Quantitative evaluation of
newly developed tools is fundamental to understanding
their efficacy in controlling invasive target populations and
to identify limitations that may indicate the need for re-
finement. Statistical models provide a powerful approach
to assess population responses of invasive species to man-
agement actions, measured as a change in abundance or
probability of survival (Jones et al. 2017, Keiter et al.
2017). Application of traditional statistical approaches for
estimating population responses, such as mark‐recapture
models, can be costly and challenging when investigating
cryptic or otherwise difficult to sample species because they
generally require large sample sizes, relatively high de-
tection probabilities, and assumptions that may be un-
reasonable (e.g., equal catchability; Jolly and Dickson
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1983, McKelvey and Pearson 2001, Link 2003). In con-
trast, known‐fate models provide precise survival estimates
and do not require large sample sizes because encounter
probabilities are assumed to be 1 by including only
radio‐tagged individuals (Pollock et al. 1989, Williams
et al. 2002).
The brown treesnake (Boiga irregularis) invasion of Guam is

one of the classic examples of the economic and ecological
damage caused by the introduction of a nonnative species to
island ecosystems and the difficulties associated with mon-
itoring a cryptic species even with high population densities
(Rodda and Savidge 2007). Brown treesnakes were likely
accidentally introduced as stowaways in United States
Navy salvage cargo in the 1940s (Rodda et al. 1992)
and had spread over the entire island by the early 1980s
(Savidge 1987, Rodda et al. 1992). Brown treesnakes caused
precipitous population declines in many of Guam's native
vertebrate fauna, including the extirpation of 10 of the 12
native forest bird species (Savidge 1987, Wiles et al. 2003,
Rodda and Savidge 2007).
Density estimates of brown treesnakes on Guam have

varied temporally and across land cover types and may have
reached levels as high as 100 snakes/ha during an earlier
phase of the invasion in 1985 (Rodda et al. 1992, 1999c).
Despite being widespread and generally abundant, brown
treesnake capture probabilities (p) are low (p= 0.14, Tyrrell
et al. 2009; p= 0.07, Christy et al. 2010). Capture and de-
tection probabilities are low for most snake species because
of their secretive and cryptic nature, minimal or periodic
activity patterns, and frequent occupation of inaccessible
areas (Parker and Plummer 1987, Durso et al. 2011, Durso
and Seigel 2015). It is particularly challenging to monitor
brown treesnakes because they meet all criteria recognized
to hamper detection in snakes and exhibit variation in de-
tectability based on sex, body condition, size, and prey
availability (Tyrrell et al. 2009; Christy et al. 2010, 2017;
Siers et al. 2018).
Brown treesnakes on Guam pose an ongoing risk of ac-

cidental introduction to other islands (Fritts 1988, Stanford
and Rodda 2007, Rodda et al. 2007b) and are an impedi-
ment to the reestablishment of extirpated native fauna.
Management of brown treesnakes has primarily focused on
containment (Rodda et al. 2007a, Hileman et al. 2021) and
localized suppression in areas surrounding transportation
ports (Clark et al. 2018). To a limited degree, habitat
fragments occupied by native species of conservation con-
cern undergo control in the form of snake removal, but the
high cost of control programs and other factors has pre-
vented widespread snake control to recover native ecosys-
tems. Typically, snakes are removed using traps with live
mouse lures, toxic baits placed in nontarget‐excluding bait
stations, and visual searching—approaches that are labor
intensive and practical at small spatial scales (Rodda
et al. 1999a). A novel system to aerially apply toxic baits
may, however, provide a means to suppress brown tree-
snakes at the landscape scale (Siers et al. 2019a) that could
be more cost efficient than trapping (Clark et al. 2012) and
allow for treatment of areas inaccessible for ground‐based

methods. This system uses an acetaminophen tablet (tox-
icant) affixed to a dead neonatal mouse (bait) that is
enclosed in a bait cartridge. Upon deployment from a
helicopter‐mounted automated delivery machine (ADM),
the cartridge opens in the air and entangles in the canopy
where the toxic bait is available to arboreally foraging brown
treesnakes (Fig. 1). Acetaminophen is an approved toxicant
for the lethal control of brown treesnakes (Savarie
et al. 2000, Johnston et al. 2002, Sharp and Saunders 2011,
van den Hurk and Kerkkamp 2019, Mathies and
Mauldin 2020) and poses minimal risk to nontarget wildlife
species (Johnston et al. 2002, Clark et al. 2012, Siers
et al. 2019b). Dead neonatal mice are attractive snake baits
(Shivik and Clark 1997), but rodent‐based toxic baits more
effectively target adults (Lardner et al. 2013) because brown
treesnakes exhibit an ontogenetic diet shift with juvenile
snakes (<700mm snout‐vent length [SVL]) consuming
primarily lizards (Savidge 1988, Rodda et al. 1999b,
Siers 2015) and exhibiting a strong prey preference for liz-
ards (Lardner et al. 2009).
Several lines of indirect evidence suggest that aerial appli-

cation of toxic baits suppress brown treesnake abundance at
large spatial scales. Nontoxic bait take rates, for instance, have
declined following experimental aerial treatment (Dorr et al.
2016, Siers et al. 2019b). But bait take rates are an index of
foraging activity rather than a direct measure of abundance
and provide no information on the traits of individuals
taking baits. Surveys and monitoring of radio‐tagged snakes
revealed morphological and behavioral heterogeneity among

Figure 1. Deployed bait cartridge suspended within canopy vegetation.
The bait mouse and acetaminophen tablet are lightly glued into the capsule
and exposed for consumption by arboreally foraging brown treesnakes on
Andersen Air Force Base, Guam, USA, 7, 10, and 14 June 2019. All
cartridge components are biodegradable. Photo is by S. R. Siers.
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individuals such that snakes were more likely to consume a
toxic bait if they exhibited lower body condition, greater
activity prior to baiting applications, and were encountered
more frequently foraging on the ground (Nafus et al. 2020),
but in this example aerial applications were simulated by
manually placing toxic baits.
We monitored brown treesnakes before, during, and after

a baiting treatment using the ADM to estimate mortality
probabilities during treatment and non‐treatment periods
using radio‐telemetry and known‐fate models. We developed
several hypotheses to explain variation in effectiveness of baits
based on previous work and aspects of brown treesnake
natural history. First, we expected application of baits to in-
crease mortality during treatment periods. Second, we pre-
dicted no sex effect on mortality because brown treesnakes do
not exhibit strong sex‐related differences in diet or capture
probability using live mouse‐baited traps (Savidge 1988,
Tyrrell et al. 2009). Finally, within the range of snakes large
enough to implant with transmitters, we predicted that
smaller adult snakes would be more susceptible to aerially
applied baits than larger individuals, for several reasons. Bait
cartridges were designed to remain in the tree canopy, and
although brown treesnakes are generally arboreal foragers,
large individuals are more often found on the forest floor
(Rodda et al. 1992, Rodda and Reed 2007, Nafus et al. 2020)
where they are less likely to encounter baits. Larger in-
dividuals also exhibit decreased attraction to rodent‐based
carrion (Shivik and Clark 1999). Moreover, the dead neo-
natal mice used in aerial bait cartridges are small and offer
lower prey value to larger snakes, thus likely decreasing rel-
ative bait attractiveness to the largest snakes (Lardner
et al. 2013).

STUDY AREA

We conducted our study between 17 May and 5 July 2019
within a 55‐ha forested plot (i.e., Habitat Management Unit;
HMU) located on Andersen Air Force Base in northern
Guam, which was established as a dedicated conservation area
and location for biological resource studies (Siers and
Savidge 2017, Siers et al. 2020a). The island of Guam expe-
riences a warm and humid tropical climate with an average
annual rainfall of 258.7 cm (Lander and Guard 2003).
Approximately one third of the average yearly rainfall total
(80.3 cm) occurs in the dry season from January to June with
an average of 178.3 cm occurring in the wet season from July
to December (Lander and Guard 2003). At approximately
150m in elevation, the substrate of the HMU is predom-
inately karst limestone with a vegetative understory dominated
by ferns (primarily sword fern [Nephrolehis hirsutula]) and a
largely uninterrupted overstory formed by a variety of trees but
most commonly vitex (Vitex parviflora), screwpine (Pandanus
tectorius), breadfruit (Artocarpus altilis), and coconut palms
(Cocos nucifera). Dominant fauna comprises several brown
treesnake prey species, including black rats (Rattus diardii),
shrews (Suncus murinus), house geckos (Hemidactylus frenatus),
and mourning geckos (Lepidodactylus lugubris) and 1 occa-
sional snake predator, Mariana monitors (Varanus tsukamotoi).
The dimensions of the roughly rectangular HMU measure

approximately 480m by 1,200m. The HMU is surrounded by
a snake exclosure fence allowing snake emigration but pre-
venting movement into the treatment area. The barrier con-
sists of a 1.8‐m high chain‐link fence extending 0.88m below
the surface and anchored with a continuous concrete footer.
Covering the outer surface of the fence is 0.5‐cm wire mesh
hardware cloth that bulges outward at 1.2m above ground
level. The bulge defeats attempts by brown treesnakes to climb
over the fence (Rodda et al. 2007c).

METHODS

We collected brown treesnakes between 17 May and 3 June
2019 from within the HMU using traps with live mice as a
lure (Tyrrell et al. 2009) or hand‐captured snakes during visual
encounter surveys (Christy et al. 2010). To meet guidelines
stipulating that transmitters do not exceed 5% of body mass,
we included only snakes greater than 90 g in mass. We se-
lected 30 brown treesnakes for inclusion in the study with an
average mass of 123.0± 6.3 g (x̄ ± 1 SE; range= 93–245g)
and average SVL of 1,062± 11mm (range= 990–1,265mm),
including 14 females (SVL= 1,033± 8mm) and 16 males
(SVL= 1,086± 18mm).
On 29 May and 4 June 2019, we anesthetized snakes

via inhalation of isoflurane and surgically implanted
4.5‐g radio‐transmitters (MST‐930‐M, Lotek Wireless,
Ontario, Canada) in the coelomic cavity (Reinert
and Cundall 1982). Motion‐sensitive transmitters
displayed a code indicating mortality if motion was not
detected for >24 hours, allowing us to determine the
status of snakes that were not visible (e.g., snakes inside
cavities or high in vegetation).
Following surgery, we observed snakes for 24 hours to

allow for recovery before we returned them to site of
capture on 30 May 2019 (n= 23) or 5 June 2019 (n= 7).
We listened for transmitter signals from outside the
perimeter of the HMU fence every Friday for 6 weeks
between 31 May and 5 July 2019 using a receiver
(SRX 800 m; Lotek Wireless) and either a 5‐element
or 3‐element Yagi directional antenna (Advanced
Telemetry Systems, Isanti, MN, USA). We entered the
HMU to search for any signal not already acquired and
to locate the carcass of any snake associated with a
transmitter indicating mortality. When it was not
possible to visually confirm death (e.g., individual was
underground), we assumed death if a snake's transmitter
consistently emitted a mortality signal that was tracked
to the same location for ≥3 consecutive weeks.
On 7, 10, and 14 June 2019, we aerially applied 19,200

bait cartridges (6,600/day) over the HMU. Cartridges were
ejected from the helicopter‐mounted ADM at a rate of
1 cartridge/9m along flight paths spaced 9m apart to evenly
distribute baits across the HMU and attain a target density
of 120 cartridges/ha/application day (the maximum rate al-
lowed by the Environmental Protection Agency pesticide
label, Registration 56228‐34). We followed all animal use
protocols in our study approved by the United States
Department of Agriculture, National Wildlife Research
Center (NWRC) Institutional Animal Care and Use

Goetz et al. • Brown Treesnake Mortality 1509



Committee (QA‐2742, QA‐2610) and the United States
Geological Survey Institutional Animal Care and Use
Committee (2018‐07). Data analyzed in the study are
available online through ScienceBase, (https://doi.org/10.
5066/P9WCZW5V).

Analyses
To evaluate if the size distribution of snakes sampled in
the present study was representative of brown treesnakes
in similar habitat on Guam, we compared our sample
(n= 30) with reference snakes (n= 54) collected from 2
limestone forest sites located approximately 4 km and
32 km from our study site and with historical study site
data. We restricted reference snakes to individuals
>990mm SVL (i.e., large enough to be fitted with radio‐
transmitters in the present study) from the reference data
to make it comparable to the present study. Because data
were left‐truncated and non‐homoscedastic (Bartlett's test
of homogeneity of variance, K‐squared= 9.032, df= 1,
P= 0.002), we tested for differences in median SVL be-
tween the present study and the reference data using a
2‐tailed independent‐sample Mann‐Whitney Wilcoxon
test. We set α= 0.05 and conducted statistical tests and
data visualization using the software program R (R Core
Team 2020).
We expected a 2‐ to 5‐day lag in treatment‐related mortality

following each bait application. Dead neonatal mice remain
viable baits for brown treesnakes for approximately 48–72hours
post‐deployment. Once baits are ingested, snakes may take an
additional 24–48hours (Mathies and Mauldin 2020) or longer
for larger snakes (Siers et al. 2021) to succumb to the toxin and
another 24hours following death for transmitters to broadcast a
mortality signal. In accordance, we determined the effective
treatment period to extend 7 days beyond the final application,
or the 2‐week period between 7 June through 21 June 2019.
The 2 weeks prior to and following this treatment period
were non‐treatment periods and used to determine a baseline
mortality rate.
We fit binomial known fate models to our data to estimate

survival (S) probabilities using Program MARK (version
9.0; White and Burnham 1999). This modeling approach
assumes that fates of individuals are known and in-
dependent of each other and that radio‐transmitters do not
affect survival (Williams et al. 2002). We used the logit link
to constrain survival parameters between 0 and 1 and the
second partial derivative method to estimate variance. For
models that included covariates, we computed 95% con-
fidence intervals using the default setting (i.e., Ŝ ±SE× 1.96
is computed on the logit scale and then back‐transformed).
For models excluding covariates, we used profile likelihood
confidence intervals. We set weekly intervals to 0.5 to derive
cumulative 2‐week mortality probabilities. We calculated
mortality (M) rates as = −M S1 . We modeled treatment
and non‐treatment effects as a binary classification factor
and sex as a binary covariate. We modeled size, based on
SVL, 2 ways: as a continuous covariate or a factor with
2 levels. We included a categorical size factor because
our sample included 2 biologically relevant and distinct

size classes. Our smaller sized group (1,019± 17mm,
range= 990–1,040mm, n= 15) corresponded to the size
range of snakes transitioning from juveniles to sexually
mature adults (910–1,030mm) and our larger‐sized group
(1,104± 59mm, range= 1,052–1,265mm, n= 15) included
individuals that are expected to be fully mature (Savidge
et al. 2007, Siers et al. 2017a). We evaluated 5 competing
models in an information‐theoretic framework and used
Akaike's Information Criterion adjusted for small sample
size (AICc) for model selection (Akaike 1973) an Akaike
weights (wi) to evaluate relative likelihood.

RESULTS

We detected no difference in median SVL between our
reference snakes and brown treesnakes from the present
study (2‐tailed Wilcoxon rank sum test with continuity
correction P= 0.75; Fig. 2). Eleven radio‐tagged snakes
died during the aerial toxicant treatment period and no
individuals died during the non‐treatment period. We
confirmed death for 10 out of 11 snakes with transmitters
emitting mortality signals by recovering carcasses; we
tracked 1 snake to the same location underneath a large
karst outcropping for 4 consecutive weeks and assumed
mortality. The transmitter in 1 of the 30 snakes malfunc-
tioned; we removed that individual from the study in week
5 (after it survived the treatment period) and euthanized it.
We censored 2 other snakes because we lost their radio
signals during the study and never recovered them, 1 in
week 4 and 1 in week 5 (1 during the treatment period and
1 after the treatment period). We confirmed all remaining
snakes with transmitters to be alive at the end of the
monitoring period through individual recovery (n= 5) or
detection of a live signal (n= 11).

Figure 2. Comparison of brown treesnake size distribution (grey circles) in
the present study (grey box) in the Habitat Management Unit (HMU) on
Andersen Air Force Base, Guam, USA, 31 May to 5 July 2019, versus
those from collected in 2010 and 2011 at the HMU, Northwest Field
Outside, and Naval Magazine, Navy Base Guam, Guam, USA (reference;
magenta box). Black circles are snakes that died during the baiting
treatment and hollow circles represent outliers (i.e., rare, larger individuals).
Boxes show the interquartile range, whiskers represent the minimum and
maximum values, and the bold horizontal line denotes the median.
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Our data provided strong evidence (wi= 0.701) for an addi-
tive size‐based treatment effect on mortality and moderate
evidence (wi= 0.196) for an SVL‐based treatment effect on
mortality with smaller snakes exhibiting higher mortality
(Table 1). There was no evidence for an additive sex‐based
treatment effect or a non‐treatment effect on mortality.
Mortality probability was higher during the treatment period
(0.37, profile likelihood 95% CI [PLCI]= 0.21–0.55) than
during non‐treatment periods (0.00, 95% PLCI= 0.00–0.04),
and the top model outperformed the no treatment model by
25.68 AICc units despite being penalized for having 2 addi-
tional parameters. When we considered categorical size‐based
treatment effects, the probability of mortality was higher
during the treatment period compared with the non‐
treatment period for both snake size classes; however, the
treatment effect was larger for smaller snakes (Fig. 3).
Similarly, the model including a continuous SVL effect re-
vealed that the probability of mortality was inversely related to
snout‐vent length such that larger snakes were more likely to
survive the toxic baiting treatment (Fig. 4).

DISCUSSION

Our findings provide direct evidence that aerial application
of toxic baits increases brown treesnake mortality at the
landscape‐scale, rather than indirect indices of relative
abundance (Siers et al. 2020b) and supports the findings of
Nafus et al. (2020). All brown treesnake mortality during
the study occurred within the treatment period, indicating
that deaths were likely caused by ingestion of toxic baits as
opposed to other natural causes or artefacts of transmitter
implantation. Adult brown treesnakes have few predators on
Guam (Savidge 1991) and recovered snake carcasses,
although decomposed, did not exhibit obvious signs of
predation such as dismemberment. Non‐movement status
signals served as a reliable indication of mortality because
all such snakes were confirmed dead via carcass recovery
(n= 10) or non‐movement for 4 consecutive weeks (n= 1)
and a subsample of snakes (n= 10) with transmitters emit-
ting a normal signal were visually verified to be alive during
the course of the study. Moreover, we observed no in-
dication of infection or injury during the surgical im-
plantation of transmitters that would have contributed to
snake death.
Our results suggest our sample was representative of adult

brown treesnake size in limestone forest on Guam (Fig. 2)
and that mortality was greater in smaller adult individuals
during the treatment period. Our findings also support
previous size‐based effects of simulated aerial application of
toxic baits (Nafus et al. 2020) and demonstrate the efficacy
of this tool during an operational aerial application. Higher
mortality of the smaller adult size class was expected, and
several facets of brown treesnake natural history could in-
fluence increased susceptibility of this group, including
greater attraction to rodent‐based carrion, likelihood of ar-
boreality, and proportionally greater prey value of neonatal
mice. We cannot determine if these factors acted synerg-
istically or which, if any, had the greatest influence on the
treatment size effect we observed. We also considered the
possibility that toxicant dosage influenced size‐based mor-
tality because the 80‐mg acetaminophen tablet could have
a larger effect on smaller snakes but concluded this

Table 1. Five candidate models considered for known fate analysis of sur-
vival (S) of brown treesnakes after aerial toxicant treatment in the Habitat
Management Unit on Andersen Air Force Base, Guam, USA, 31 May to
5 July 2019. The 2 top models include a snake size variable: a categorical
variable of size (small= 990–1,040mm vs. large= 1,052–1,265mm) or a
continuous variable of snout‐vent length (SVL). The treatment variable
indicated periods of toxic bait treatment.

Model AICc
a ΔAICc

b wi
c Kd −2 Log ( )e

S (treatment+ size) 53.260 0.000 0.701 3 47.081
S (treatment+ SVL) 55.811 2.552 0.196 3 49.632
S (treatment) 58.222 4.962 0.059 2 54.133
S (treatment+ sex) 58.793 5.534 0.044 3 52.614
S (no treatment) 78.940 25.680 0.000 1 76.910

a Models are ranked in ascending Akaike's Information Criterion ad-
justed for small sample size (AICc) order.

b Difference between model i and the top‐ranked model.
c Model weight.
d Number of parameters.
e Difference in −2 log likelihood of the current model and the saturated
model.

Figure 3. Two‐week mortality probabilities for larger and smaller adult
brown treesnakes during non‐treatment and treatment periods on Andersen
Air Force Base, Guam, USA, 31 May to 5 July 2019. Error bars are profile
likelihood 95% confidence intervals.

Figure 4. The effect of snout‐vent length (SVL) on brown treesnake
mortality probabilities (black line) surrounded by 95% confidence intervals
(gray band) during the 2‐week treatment period on Andersen Air Force
Base, Guam, USA, 7 June to 21 June 2019. Tick marks indicate the snout‐
vent length of individual radio‐tagged snakes that survived (0.0) or died
(1.0) during the treatment period.
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explanation is unlikely given that Savarie et al. (2001) re-
ported an 80‐mg dose orally delivered in a dead mouse to be
100% lethal for snakes (n= 29) <300 g in mass. Although
there is evidence that some very large snakes will survive a
single 80‐mg dose, survival is very rare until masses exceed
250 g (Siers et al. 2021), which is larger than any subject in
this trial; snakes >250 g account for <7% of males and <2%
of females captured during a systematic island‐wide visual
sampling effort (Siers 2015, Siers et al. 2017b). Given the
similar diets and lethality of acetaminophen among males
and females, we found no sex‐specific effect on probability
of mortality. This is an important finding because females
influence population growth and our results suggest toxic
baits are equally effective against females and males.
Further, although brown treesnakes exhibit sexual size di-
morphism with males attaining maximum sizes much
greater than females (Rodda et al. 1999b, Siers et al. 2017b),
no snake included in our sample exceeded upper limits of
female size. Greater understanding as to why smaller adults
of both sexes are more susceptible to our current toxic baits
may provide the key to modifying baits or baiting ap-
proaches to better target adult snakes of all size classes.
Although not directly examined here, environmental fac-

tors and aspects of snake foraging behavior likely influenced
brown treesnake mortality rates during baiting treatments.
Brown treesnake activity in tropical Australia is positively
associated with rainfall and ambient temperature (Trembath
and Fearn 2008) that may, in part, reflect greater foraging
activity. Our baiting treatment in early June corresponds to
the start of the wet season on Guam, during which in-
creased foraging activity may be expected; however, brown
treesnakes display a reduced response to mouse carrion lures
during the wet season (Shivik et al. 2000). This apparent
paradox may be explained by increased prey abundance
during the wet season, possibly decreasing brown treesnake
interest in carrion because available live prey is more at-
tractive, or snakes are satiated. In support of this idea, ex-
perimental manipulation to reduce rodent abundance
increased brown treesnake capture probabilities (Gragg
et al. 2007) and snakes that exhibited lower body condition,
suggesting recent difficulty locating prey, showed an in-
creased susceptibility to toxic baits (Nafus et al. 2020).
Moreover, brown treesnakes are more frequently in specific
microhabitats, for example screwpine and sword ferns
(Hetherington et al. 2008, Boback et al. 2020); however, the
possible interaction between habitat use and bait encounter
rates remains unexplored. Finally, stochastic weather events,
such as heavy rainfall events or high wind speed during the
bait application window, although not observed here, could
dissolve the acetaminophen tablet (Nafus et al. 2018) and
influence snake foraging behavior.
We provide a snapshot of the effects of a toxic baiting treat-

ment, but it is difficult to forecast how mortality rates might
vary in subsequent baiting operations or affect long‐term pop-
ulation trends in treated areas. Two aerial baiting treatments
occurred at our study site in the 8 months prior to the treatment
examined here. Most snakes included in our sample, especially
those over 1,000 SVL, were likely adults at the time of the

previous drops yet survived. Multiple factors specific to in-
dividual snakes may have reduced foraging activity, thus sus-
ceptibility to baits, such as inactivity following ingestion of a
large meal or prior to ecdysis (Rodda et al. 1999b, Siers
et al. 2018). Brown treesnakes may also exhibit individual
heterogeneity in response to rodent‐based carrion, given heter-
ogeneity in capture probabilities in traps using rodent lures
(Tyrrell et al. 2009) and evidence of only capturing some in-
dividuals in traps containing avian lures despite being sur-
rounded by rodent lure traps (Yackel Adams et al. 2019).
Additional work is needed to explore this possibility, but if a
subset of the population, independent of body size, exhibits little
interest towards rodent‐based carrion, then we might observe a
pattern of decreased mortality rates during future treatments as
that segment becomes a larger proportion of the population
(Zavorka et al. 2018). Mortality during future treatments may
also decrease if suppression of brown treesnake abundance al-
lows for a rebound of prey populations (Campbell et al. 2012),
and thus creates the scenario of increased prey abundance and
decreased snake interest in carrion baits.

MANAGEMENT IMPLICATIONS

We demonstrate 37% mortality of adult brown treesnakes in
a large enclosure in response to a single period (3 aerial
applications) of baiting. Our identification of lower sus-
ceptibility to baits among larger snakes may aid future re-
finements of this management tool, such as including larger
mammalian or bird‐based carrion baits. We suggest aerial
application of toxic baits has the potential to suppress brown
treesnake abundance at large spatial scales.
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