535 research outputs found
Imperfect identity
Questions of identity over time are often hard to answer. A long
tradition has it that such questions are somehow soft: they have no unique,
determinate answer, and disagreements about them are merely verbal. I
argue that this claim is not the truism it is taken to be. Depending on how
it is understood, it turns out either to be false or to presuppose a highly
contentious metaphysical claim
What\u27s going well: a qualitative analysis of positive patient and family feedback in the context of the diagnostic process
OBJECTIVES: Accurate and timely diagnosis relies on close collaboration between patients/families and clinicians. Just as patients have unique insights into diagnostic breakdowns, positive patient feedback may also generate broader perspectives on what constitutes a good diagnostic process (DxP).
METHODS: We evaluated patient/family feedback on what\u27s going well as part of an online pre-visit survey designed to engage patients/families in the DxP. Patients/families living with chronic conditions with visits in three urban pediatric subspecialty clinics (site 1) and one rural adult primary care clinic (site 2) were invited to complete the survey between December 2020 and March 2022. We adapted the Healthcare Complaints Analysis Tool (HCAT) to conduct a qualitative analysis on a subset of patient/family responses with ≥20 words.
RESULTS: In total, 7,075 surveys were completed before 18,129 visits (39 %) at site 1, and 460 surveys were completed prior to 706 (65 %) visits at site 2. Of all participants, 1,578 volunteered positive feedback, ranging from 1-79 words. Qualitative analysis of 272 comments with ≥20 words described: Relationships (60 %), Clinical Care (36 %), and Environment (4 %). Compared to primary care, subspecialty comments showed the same overall rankings. Within Relationships, patients/families most commonly noted: thorough and competent attention (46 %), clear communication and listening (41 %) and emotional support and human connection (39 %). Within Clinical Care, patients highlighted: timeliness (31 %), effective clinical management (30 %), and coordination of care (25 %).
CONCLUSIONS: Patients/families valued relationships with clinicians above all else in the DxP, emphasizing the importance of supporting clinicians to nurture effective relationships and relationship-centered care in the DxP
Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity.
BackgroundThe newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known.ResultsHere, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR. By establishing the linkages between bacterial features and the groundwater environmental conditions, our results provide important insights into the functions and evolution of this CPR group.ConclusionsWe found that Patescibacteria has streamlined many functions while acquiring advantages such as avoiding phage invasion, to adapt to the groundwater environment. The unique features of small genome size, ultra-small cell size, and lacking CRISPR of this large lineage are bringing new understandings on life of Bacteria. Our results provide important insights into the mechanisms for adaptation of the superphylum in the groundwater environments, and demonstrate a case where less is more, and small is mighty
The Primordial Inflation Polarization Explorer (PIPER)
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne
cosmic microwave background (CMB) polarimeter designed to search for evidence
of inflation by measuring the large-angular scale CMB polarization signal.
BICEP2 recently reported a detection of B-mode power corresponding to the
tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is
caused by inflationary gravitational waves (IGWs), then there should be a
corresponding increase in B-mode power on angular scales larger than 18
degrees. PIPER is currently the only suborbital instrument capable of fully
testing and extending the BICEP2 results by measuring the B-mode power spectrum
on angular scales = ~0.6 deg to 90 deg, covering both the reionization
bump and recombination peak, with sensitivity to measure the tensor-to-scalar
ratio down to r = 0.007, and four frequency bands to distinguish foregrounds.
PIPER will accomplish this by mapping 85% of the sky in four frequency bands
(200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from
the northern and southern hemispheres. The instrument has background-limited
sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal
onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor
(TES) bolometers held at 140 mK. Polarization sensitivity and systematic
control are provided by front-end Variable-delay Polarization Modulators
(VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow
PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each
pointing. We describe the PIPER instrument and progress towards its first
flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
A Carrier for Non-Covalent Delivery of Functional Beta-Galactosidase and Antibodies against Amyloid Plaques and IgM to the Brain
BACKGROUND: Therapeutic intervention of numerous brain-associated disorders currently remains unrealized due to serious limitations imposed by the blood-brain-barrier (BBB). The BBB generally allows transport of small molecules, typically <600 daltons with high octanol/water partition coefficients, but denies passage to most larger molecules. However, some receptors present on the BBB allow passage of cognate proteins to the brain. Utilizing such receptor-ligand systems, several investigators have developed methods for delivering proteins to the brain, a critical requirement of which involves covalent linking of the target protein to a carrier entity. Such covalent modifications involve extensive preparative and post-preparative chemistry that poses daunting limitations in the context of delivery to any organ. Here, we report creation of a 36-amino acid peptide transporter, which can transport a protein to the brain after routine intravenous injection of the transporter-protein mixture. No covalent linkage of the protein with the transporter is necessary. APPROACH: A peptide transporter comprising sixteen lysine residues and 20 amino acids corresponding to the LDLR-binding domain of apolipoprotein E (ApoE) was synthesized. Transport of beta-galactosidase, IgG, IgM, and antibodies against amyloid plques to the brain upon iv injection of the protein-transporter mixture was evaluated through staining for enzyme activity or micro single photon emission tomography (micro-SPECT) or immunostaining. Effect of the transporter on the integrity of the BBB was also investigated. PRINCIPAL FINDINGS: The transporter enabled delivery to the mouse brain of functional beta-galactosidase, human IgG and IgM, and two antibodies that labeled brain-associated amyloid beta plaques in a mouse model of Alzheimer's disease. SIGNIFICANCE: The results suggest the transporter is able to transport most or all proteins to the brain without the need for chemically linking the transporter to a protein. Thus, the approach offers an avenue for rapid clinical evaluation of numerous candidate drugs against neurological diseases including cancer. (299 words)
Recommended from our members
Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution
We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called “dorsal.” On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other.</p
Common single-base insertions in the VNTR of the carboxyl ester lipase (CEL) gene are benign and also likely to arise somatically in the exocrine pancreas
The CEL gene encodes carboxyl ester lipase, a pancreatic digestive enzyme. CEL is extremely polymorphic due to a variable number tandem repeat (VNTR) located in the last exon. Single-base deletions within this VNTR cause the inherited disorder MODY8, whereas little is known about VNTR single-base insertions in pancreatic disease. We therefore mapped CEL insertion variants (CEL-INS) in 200 Norwegian patients with pancreatic neoplastic disorders. Twenty-eight samples (14.0%) carried CEL-INS alleles. Most common were insertions in repeat 9 (9.5%), which always associated with a VNTR length of 13 repeats. The combined INS allele frequency (0.078) was similar to that observed in a control material of 416 subjects (0.075). We performed functional testing in HEK293T cells of a set of CEL-INS variants, in which the insertion site varied from the first to the 12th VNTR repeat. Lipase activity showed little difference among the variants. However, CEL-INS variants with insertions occurring in the most proximal repeats led to protein aggregation and endoplasmic reticulum stress, which upregulated the unfolded protein response. Moreover, by using a CEL-INS-specific antibody, we observed patchy signals in pancreatic tissue from humans without any CEL-INS variant in the germline. Similar pancreatic staining was seen in knock-in mice expressing the most common human CEL VNTR with 16 repeats. CEL-INS proteins may therefore be constantly produced from somatic events in the normal pancreatic parenchyma. This observation along with the high population frequency of CEL-INS alleles strongly suggests that these variants are benign, with a possible exception for insertions in VNTR repeats 1-4
Inflammation, insulin resistance, and diabetes-mendelian randomization using CRP haplotypes points upstream
Background
Raised C-reactive protein (CRP) is a risk factor for type 2 diabetes. According to the Mendelian randomization method, the association is likely to be causal if genetic variants that affect CRP level are associated with markers of diabetes development and diabetes. Our objective was to examine the nature of the association between CRP phenotype and diabetes development using CRP haplotypes as instrumental variables.
Methods and Findings
We genotyped three tagging SNPs (CRP + 2302G > A; CRP + 1444T > C; CRP + 4899T > G) in the CRP gene and measured serum CRP in 5,274 men and women at mean ages 49 and 61 y (Whitehall II Study). Homeostasis model assessment-insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) were measured at age 61 y. Diabetes was ascertained by glucose tolerance test and self-report. Common major haplotypes were strongly associated with serum CRP levels, but unrelated to obesity, blood pressure, and socioeconomic position, which may confound the association between CRP and diabetes risk. Serum CRP was associated with these potential confounding factors. After adjustment for age and sex, baseline serum CRP was associated with incident diabetes (hazard ratio = 1.39 [95% confidence interval 1.29-1.51], HOMA-IR, and HbA1c, but the associations were considerably attenuated on adjustment for potential confounding factors. In contrast, CRP haplotypes were not associated with HOMA-IR or HbA1c (p=0.52-0.92). The associations of CRP with HOMA-IR and HbA1c were all null when examined using instrumental variables analysis, with genetic variants as the instrument for serum CRP. Instrumental variables estimates differed from the directly observed associations (p=0.007-0.11). Pooled analysis of CRP haplotypes and diabetes in Whitehall II and Northwick Park Heart Study II produced null findings (p=0.25-0.88). Analyses based on the Wellcome Trust Case Control Consortium (1,923 diabetes cases, 2,932 controls) using three SNPs in tight linkage disequilibrium with our tagging SNPs also demonstrated null associations.
Conclusions
Observed associations between serum CRP and insulin resistance, glycemia, and diabetes are likely to be noncausal. Inflammation may play a causal role via upstream effectors rather than the downstream marker CRP
Recommended from our members
A high-resolution map of human evolutionary constraint using 29 mammals.
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease
- …