135 research outputs found

    The Power of One: Effects of CEO Duality on Compensation Committee Quality and CEO Compensation

    Get PDF
    This paper contributes to the corporate governance literature by focusing on how Chief Executive Officer (“CEO”) duality and compensation committee quality are related to CEO compensation in the period since passage of the Sarbanes Oxley Act (“SOX”). Unlike research prior to SOX that focused chiefly on committee members’ independence, we measure compensation committee quality in two ways. We consider the average number of board directorships held by compensation committee members as well as the proportion of committee members with prior or current CEO duality experience. We introduce the latter variable as a new measure of quality as it has not been utilized in research conducted prior to or since the passage of SOX. Using a sample of 100 2007 Fortune 500 firms, we find that CEO duality does not have a significant effect on CEO compensation. However, we document a positive relationship between average number of directorships and CEO compensation and also find evidence that CEO duality moderates the relationship between our measures of compensation committee quality and CEO compensation

    Micro- and nanoparticulates for DNA vaccine delivery

    Get PDF
    DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective immune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpensive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to immune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA represent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection efficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through administration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel biomaterial- based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their implications for generating immune responses

    Micro- and nanoparticulates for DNA vaccine delivery

    Get PDF
    DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective immune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpensive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to immune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA represent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection efficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through administration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel biomaterial- based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their implications for generating immune responses

    Chitosan-zein nano-in-microparticles Capable of Mediating in vivo Transgene Expression Following Oral Delivery

    Get PDF
    The oral route is an attractive delivery route for the administration of DNA-based therapeutics, specifically for applications in gene therapy and DNA vaccination. However, oral DNA delivery is complicated by the harsh and variable conditions encountered throughout gastrointestinal (GI) transit, leading to degradation of the delivery vector and DNA cargo, and subsequent inefficient delivery to target cells. In this work, we demonstrate the development and optimization of a hybrid-dual particulate delivery system consisting of two natural biomaterials, zein (ZN) and chitosan (CS), to mediate oral DNA delivery. Chitosan-Zein Nano-in-Microparticles (CS-ZN-NIMs), consisting of core Chitosan/DNA nanoparticles (CS/DNA NPs) prepared by ionic gelation with sodium tripolyphosphate (TPP), further encapsulated in ZN microparticles, were formulated using a water-in-oil emulsion (W/O). The resulting particles exhibited high CS/DNA NP loading and encapsulation within ZN microparticles. DNA release profiles in simulated gastric fluid (SGF) were improved compared to un-encapsulated CS/ DNA NPs. Further, site-specific degradation of the outer ZN matrix and release of transfection competent CS/ DNA NPs occurred in simulated intestinal conditions with CS/DNA NP cores successfully mediating transfection in vitro. Finally, CS-ZN-NIMs encoding GFP delivered by oral gavage in vivo induced the production of anti-GFP IgA antibodies, demonstrating in vivo transfection and expression. Together, these results demonstrate the successful formulation of CS-ZN-NIMs and their potential to improve oral gene delivery through improved protection and controlled release of DNA cargo

    Anthrax Lethal Toxin-Induced Gene Expression Changes in Mouse Lung

    Get PDF
    A major virulence factor of Bacillus anthracis is the anthrax Lethal Toxin (LeTx), a bipartite toxin composed of Protective Antigen and Lethal Factor. Systemic administration of LeTx to laboratory animals leads to death associated with vascular leakage and pulmonary edema. In this study, we investigated whether systemic exposure of mice to LeTx would induce gene expression changes associated with vascular/capillary leakage in lung tissue. We observed enhanced susceptibility of A/J mice to death by systemic LeTx administration compared to the C57BL/6 strain. LeTx-induced groups of both up- and down-regulated genes were observed in mouse lungs 6 h after systemic administration of wild type toxin compared to lungs of mice exposed to an inactive mutant form of the toxin. Lungs of the less susceptible C57BL/6 strain showed 80% fewer differentially expressed genes compared to lungs of the more sensitive A/J strain. Expression of genes known to regulate vascular permeability was modulated by LeTx in the lungs of the more susceptible A/J strain. Unexpectedly, the largest set of genes with altered expression was immune specific, characterized by the up-regulation of lymphoid genes and the down-regulation of myeloid genes. Transcripts encoding neutrophil chemoattractants, modulators of tumor regulation and angiogenesis were also differentially expressed in both mouse strains. These studies provide new directions for the investigation of vascular leakage and pulmonary edema induced by anthrax LeTx

    Free Polyethylenimine Enhances Substrate-Mediated Gene Delivery on Titanium Substrates Modified With RGD-Functionalized Poly(acrylic acid) Brushes

    Get PDF
    Substrate mediated gene delivery (SMD) is a method of immobilizing DNA complexes to a substrate via covalent attachment or nonspecific adsorption, which allows for increased transgene expression with less DNA compared to traditional bolus delivery. It may also increase cells receptivity to transfection via cell-material interactions. Substrate modifications with poly(acrylic) acid (PAA) brushes may improve SMD by enhancing substrate interactions with DNA complexes via tailored surface chemistry and increasing cellular adhesion via moieties covalently bound to the brushes. Previously, we described a simple method to graft PAA brushes to Ti and further demonstrated conjugation of cell adhesion peptides (i.e., RGD) to the PAA brushes to improve biocompatibility. The objective of this work was to investigate the ability of Ti substrates modified with PAA-RGD brushes (PAA-RGD) to immobilize complexes composed of branched polyethyleneimine and DNA plasmids (bPEI-DNA) and support SMD in NIH/3T3 fibroblasts. Transfection in NIH/3T3 cells cultured on bPEI-DNA complexes immobilized onto PAA-RGD substrates was measured and compared to transfection in cells cultured on control surfaces with immobilized complexes including Flat Ti, PAA brushes modified with a control peptide (RGE), and unmodified PAA. Transfection was two-fold higher in cells cultured on PAA-RGD compared to those cultured on all control substrates. While DNA immobilization measured with radiolabeled DNA indicated that all substrates (PAA-RGD, unmodified PAA, Flat Ti) contained nearly equivalent amounts of loaded DNA, ellipsometric measurements showed that more total mass (i.e., DNA and bPEI, both complexed and free) was immobilized to PAA and PAA-RGD compared to Flat Ti. The increase in adsorbed mass may be attributed to free bPEI, which has been shown to improve transfection. Further transfection investigations showed that removing free bPEI from the immobilized complexes decreased SMD transfection and negated any differences in transfection success between cells cultured on PAA-RGD and on control substrates, suggesting that free bPEI may be beneficial for SMD in cells cultured on bPEI-DNA complexes immobilized on PAA-RGD grafted to Ti. This work demonstrates that substrate modification with PAA-RGD is a feasible method to enhance SMD outcomes on Ti and may be used for future applications such as tissue engineering, gene therapy, and diagnostics

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore