31 research outputs found

    Probing the Inner Regions of Protoplanetary Disks with CO Absorption Line Spectroscopy

    Full text link
    Carbon monoxide (CO) is the most commonly used tracer of molecular gas in the inner regions of protoplanetary disks. CO can be used to constrain the excitation and structure of the circumstellar environment. Absorption line spectroscopy provides an accurate assessment of a single line-of-sight through the protoplanetary disk system, giving more straightforward estimates of column densities and temperatures than CO and molecular hydrogen emission line studies. We analyze new observations of ultraviolet CO absorption from the Hubble Space Telescope along the sightlines to six classical T Tauri stars. Gas velocities consistent with the stellar velocities, combined with the moderate-to-high disk inclinations, argue against the absorbing CO gas originating in a fast-moving disk wind. We conclude that the far-ultraviolet observations provide a direct measure of the disk atmosphere or possibly a slow disk wind. The CO absorption lines are reproduced by model spectra with column densities in the range N(^{12}CO) ~ 10^{16} - 10^{18} cm^{-2} and N(^{13}CO) ~ 10^{15} - 10^{17} cm^{-2}, rotational temperatures T_{rot}(CO) ~ 300 - 700 K, and Doppler b-values, b ~ 0.5 - 1.5 km s^{-1}. We use these results to constrain the line-of-sight density of the warm molecular gas (n_{CO} ~ 70 - 4000 cm^{-3}) and put these observations in context with protoplanetary disk models.Comment: 12 pages, 14 figures, ApJ - accepte

    Recombination Ghosts in Littrow Configuration: Implications for Spectrographs Using Volume Phase Holographic Gratings

    Full text link
    We report the discovery of optical ghosts generated when using Volume Phase Holographic (VPH) gratings in spectrographs employing the Littrow configuration. The ghost is caused by light reflected off the detector surface, recollimated by the camera, recombined by, and reflected from, the grating and reimaged by the camera onto the detector. This recombination can occur in two different ways. We observe this ghost in two spectrographs being developed by the University of Wisconsin - Madison: the Robert Stobie Spectrograph for the Southern African Large Telescope and the Bench Spectrograph for the WIYN 3.5m telescope. The typical ratio of the brightness of the ghost relative to the integrated flux of the spectrum is of order 10^-4, implying a recombination efficiency of the VPH gratings of order 10^-3 or higher, consistent with the output of rigorous coupled wave analysis. Any spectrograph employing VPH gratings, including grisms, in Littrow configuration will suffer from this ghost, though the general effect is not intrinsic to VPH gratings themselves and has been observed in systems with conventional gratings in non-Littrow configurations. We explain the geometric configurations that can result in the ghost as well as a more general prescription for predicting its position and brightness on the detector. We make recommendations for mitigating the ghost effects for spectrographs and gratings currently built. We further suggest design modifications for future VPH gratings to eliminate the problem entirely, including tilted fringes and/or prismatic substrates. We discuss the resultant implications on the spectrograph performance metrics.Comment: 13 pages, 8 figures, emulateapj style, accepted for publication in PAS

    Rocket Observations of Far-Ultraviolet Dust Scattering in NGC 2023

    Get PDF
    The reflection nebula NGC 2023 was observed by a rocket-borne long-slit imaging spectrograph in the 900 -- 1400 Angstrom bandpass on 2000 February 11. A spectrum of the star, as well as that of the nebular scattered light, was recorded. Through the use of a Monte Carlo modeling process, the scattering properties of the dust were derived. The albedo is low, 0.2 -- 0.4, and decreasing toward shorter wavelengths, while the phase function asymmetry parameter is consistent with highly forward-scattering grains, g~0.85. The decrease in albedo, while the optical depth increases to shorter wavelengths, implies that the far-UV rise in the extinction curve is due to an increase in absorption efficiency.Comment: 16 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Atomic and Molecular Carbon as a Tracer of Translucent Clouds

    Full text link
    Using archival, high-resolution far-ultraviolet HST/STIS spectra of 34 Galactic O and B stars, we measure CI column densities and compare them with measurements from the literature of CO and H_2 with regard to understanding the presence of translucent clouds along the line-of-sight. We find that the CO/H_2 and CO/CI ratios provide good discriminators for the presence of translucent material, and both increase as a function of molecular fraction, f = 2N(H_2)/N(H). We suggest that sightlines with values below CO/H_2 ~ 1E-6 and CO/CI ~ 1 contain mostly diffuse molecular clouds, while those with values above sample clouds in the transition region between diffuse and dark. These discriminating values are also consistent with the change in slope of the CO v. H_2 correlation near the column density at which CO shielding becomes important, as evidenced by the change in photochemistry regime studied by Sheffer et al. (2008). Based on the lack of correlation of the presence of translucent material with traditional measures of extinction we recommend defining 'translucent clouds' based on the molecular content rather than line-of-sight extinction properties.Comment: 9 pages, accepted for publication in the Astrophysical Journal; new version corrects minor typographical error

    Direct Measurement of the Ratio of Carbon Monoxide to Molecular Hydrogen in the Diffuse Interstellar Medium

    Get PDF
    We have used archival far-ultraviolet spectra from observations made by HST/STIS and FUSE to determine the column densities and rotational excitation temperatures for CO and H2, respectively, along the lines of sight to 23 Galactic O and B stars. The sightlines have reddening values in the range E(B-V)= 0.07-0.62, sampling the diffuse to translucent interstellar medium. We find that the H2 column densities range from 5x10^18-8x10^20 cm^-2 and the CO from upper limits around 2x10^12 cm^-2 to detections as high as 1.4x10^16 cm^-2. CO increases with increasing H2, roughly following a power law of factor \~2. The CO/H2 column density ratio is thus not constant, and ranges from 10^-7 - 10^-5, with a mean value of 3x10^-6. The sample segregates into "diffuse" and "translucent" regimes, the former having a molecular fraction less than ~0.25 and A_V/d<1 mag kpc^-1. The mean CO/H2 for these two regimes are 3.6x10^-7 and 9.3x10^-6, respectively, significantly lower than the canonical dark cloud value of 10^-4. In six of the sightlines, 13CO is observed, and the isotopic ratio we observe (~50-70) is consistent with, if perhaps a little below, the average 12C/13C for the ISM at large. The average H2 rotational excitation temperature is 74+/-24 K, in good agreement with previous studies, and the average CO temperature is 4.1 K, with some sightlines as high as 6.4 K. The higher excitation CO is observed with higher column densities, consistent with the effects of photon trapping in clouds with densities in the 20-100 cm^-3 range. We discuss the implications for the structure of the diffuse/translucent regimes of the interstellar medium and the estimation of molecular mass in galaxies.Comment: emualateapj style, 6 figures, 3 tables, accepted on 21 Nov 2006 for publication in The Astrophysical Journa

    On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    Get PDF
    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to E(B-V), being associated with more curvature. A weaker trend with the linear extinction term was also found. Mechanisms for enhancing CO in dust environments exhibiting high non-linear curvature are discussed.Comment: 10 pages, including 6 figures. LaTeX2e (emulateapj5.sty). To appear in ApJ, Sep 20, 200

    Characterizing CO Fourth Positive Emission in Young Circumstellar Disks

    Full text link
    Carbon Monoxide is a commonly used IR/sub-mm tracer of gas in protoplanetary disks. We present an analysis of ultraviolet CO emission in {HST}-COS spectra for 12 Classical T Tauri stars. Several ro-vibrational bands of the CO A^1\Pi - X^1\Sigma^+ (Fourth Positive) electronic transition system are spectrally resolved from emission of other atoms and H_2. The CO A^1\Pi v'=14 state is populated by absorption of Ly\alpha photons, created at the accretion column on the stellar surface. For targets with strong CO emission, we model the Ly\alpha radiation field as an input for a simple fluorescence model to estimate CO rotational excitation temperatures and column densities. Typical column densities range from N_{CO} = 10^{18} - 10^{19} cm^{-2}. Our measured excitation temperatures are mostly below T_{CO} = 600 K, cooler than typical M-band CO emission. These temperatures and the emission line widths imply that the UV emission originates in a different population of CO than that which is IR-emitting. We also find a significant correlation between CO emission and the disk accretion rate M_{acc} and age. Our analysis shows that ultraviolet CO emission can be a useful diagnostic of CTTS disk gas

    Instrumentation for high-resolution spectropolarimetry

    Get PDF
    ABSTRACT Linear spectropolarimetry of spectral lines is a neglected field in astronomy, largely because of the lack of instrumentation. Techniques that have been applied, but rarely, include investigation of the dynamics of scattering envelopes through the polarization of electron-or dust-scattered nebular light. Untried techniques include promising new magnetic diagnostics like the Hanle Effect in the far-ultraviolet and magnetic realignment in the visible. The University of Wisconsin Space Astronomy Lab is developing instrumentation for such investigations. In the visible, the Prime Focus Imaging Spectrograph (PFIS) is a first light instrument for the Southern African Large Telescope (SALT), which at an aperture of 11m will be the largest single telescope in the Southern Hemisphere. Scheduled for commissioning in late 2004, PFIS is a versatile highthroughput imaging spectrograph using volume-phase holographic gratings for spectroscopic programs from 320nm to 900nm at resolutions of R=500 to R=6000. A dual-etalon Fabry-Perot subsystem enables imaging spectroscopy at R=500 and R=3000 or 12,500. The polarization subsystem, consisting of a very large calcite polarizing beam-splitter used in conjunction with half-and quarter-wave Pancharatnam superachromatic plates, allow linear or circular polarimetric measurements in any of the spectroscopic modes. In the FUV, the Far-Ultraviolet SpectroPolarimeter (FUSP) is a sounding rocket payload, scheduled for its first flight in 2003, that will obtain the first high-precision spectropolarimetry from 105 -150 nm, and the first astronomical polarimetry of any kind below 130 nm. The 50 cm primary mirror of the telescope is F/2.5. At the prime focus are the polarimetric optics, a stressed lithium fluoride rotating waveplate, followed by a synthetic diamond Brewsterangle mirror. The spectrometer uses an aberration-corrected spherical holographic grating and a UV-sensitized CCD detector, for a spectral resolution of R=1800

    Discovery of the first symbiotic star in NGC6822

    Full text link
    We report the discovery of the first symbiotic star (V=21.6, K_S=15.8 mag) in the Local Group dwarf irregular galaxy NGC6822. This star was identified during a spectral survey of Ha emission-line objects using the Southern African Large Telescope (SALT) during its performance-verification phase. The observed strong emission lines of HI and HeII suggest a high electron density and T* < 130 000 K for the hot companion. The infrared colours allow us to classify this object as an S-type symbiotic star, comprising a red giant losing mass to a compact companion. The red giant is an AGB carbon star, and a semi-regular variable, pulsating in the first overtone with a period of 142 days. Its bolometric magnitude is M_bol=-4.4 mag. We review what is known about the luminosities of extragalactic symbiotic stars, showing that most, possibly all, contain AGB stars. We suggest that a much larger fraction of Galactic symbiotic stars may contain AGB stars than was previously realised.Comment: 6 pages, 4 figures, accepted to MNRA
    corecore