361 research outputs found

    Genetically modulated educational attainment and coronary disease risk.

    Get PDF
    AIMS: Genetic disposition and lifestyle factors are understood as independent components underlying the risk of multiple diseases. In this study, we aim to investigate the interplay between genetics, educational attainment-an important denominator of lifestyle-and coronary artery disease (CAD) risk. METHODS AND RESULTS: Based on the effect sizes of 74 genetic variants associated with educational attainment, we calculated a 'genetic education score' in 13 080 cases and 14 471 controls and observed an inverse correlation between the score and risk of CAD [P = 1.52 × 10-8; odds ratio (OR) 0.79, 95% confidence interval (CI) 0.73-0.85 for the higher compared with the lowest score quintile]. We replicated in 146 514 individuals from UK Biobank (P = 1.85 × 10-6) and also found strong associations between the 'genetic education score' with 'modifiable' risk factors including smoking (P = 5.36 × 10-23), body mass index (BMI) (P = 1.66 × 10-30), and hypertension (P = 3.86 × 10-8). Interestingly, these associations were only modestly attenuated by adjustment for years spent in school. In contrast, a model adjusting for BMI and smoking abolished the association signal between the 'genetic education score' and CAD risk suggesting an intermediary role of these two risk factors. Mendelian randomization analyses performed with summary statistics from large genome-wide meta-analyses and sensitivity analysis using 1271 variants affecting educational attainment (OR 0.68 for the higher compared with the lowest score quintile; 95% CI 0.63-0.74; P = 3.99 × 10-21) further strengthened these findings. CONCLUSION: Genetic variants known to affect educational attainment may have implications for a health-conscious lifestyle later in life and subsequently affect the risk of CAD.This work was supported by grants from the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014), and the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no HEALTH-F2-2013-601456 (CVgenes-at-target). Further grants were received from the DFG as part of the Sonderforschungsbereich CRC 1123 (B2). T.K. was supported by a DZHK Rotation Grant

    White blood cells and blood pressure: a Mendelian randomization study

    Get PDF
    Background: High blood pressure (BP) is a risk factor for cardiovascular morbidity and mortality. While BP is regulated by the function of kidney, vasculature and sympathetic nervous system, recent experimental data suggest that immune cells may play a role in hypertension. Methods: We studied the relationship between major white blood cell types and blood pressure in the UK Biobank population and employed Mendelian randomization (MR) analyses using the ∼750,000 UK-Biobank/International Consortium of Blood Pressure-Genome-Wide Association Studies to examine which leukocyte populations may be causally linked to BP. Results: A positive association between quintiles of lymphocyte, monocyte, neutrophil counts and increased systolic (SBP), diastolic (DBP) and pulse pressure (PP) was observed (e.g. adjusted SBP mean±SE for 1st vs 5th quintile respectively: 140.13±0.08 vs. 141.62±0.07 mmHg for lymphocyte, 139.51±0.08 vs. 141.84±0.07 mmHg for monocyte, and 137.96±0.08 vs. 142.71±0.07 mmHg for neutrophil counts, all p<10-50). Using 121 SNPs in MR implemented through the inverse-variance weighted (IVW) approach, we identified a potential causal relationship of lymphocyte count with SBP and DBP (causal estimates: 0.69 (95%CI: 0.19-1.20) and 0.56 (95%CI: 0.23-0.90) of mmHg per 1 SD genetically elevated lymphocyte count, respectively), which was directionally concordant to the observational findings. These IVW estimates were consistent with other, robust MR methods. Interestingly, the exclusion of rs3184504 SNP in the SH2B3 locus attenuated the magnitude of the signal in some of the MR analyses. MR in the reverse direction found evidence of positive effects of BP indices on counts of monocytes, neutrophils and eosinophils, but not lymphocytes or basophils. Subsequent MR testing of lymphocyte count in the context of genetic correlation with renal function or resting and post-exercise heart rate demonstrated a positive association of lymphocyte count with urinary albumin to creatinine ratio. Conclusions: Observational and genetic analyses demonstrate a concordant, positive and potentially causal relationship of lymphocyte count with SBP and DBP

    Genetic susceptibility loci for cardiovascular disease and their impact on atherosclerotic plaques

    Get PDF
    Background: Atherosclerosis is a chronic inflammatory disease in part caused by lipid uptake in the vascular wall, but the exact underlying mechanisms leading to acute myocardial infarction and stroke remain poorly understood. Large consortia identified genetic susceptibility loci that associate with large artery ischemic stroke and coronary artery disease. However, deciphering their underlying mechanisms are challenging. Histological studies identified destabilizing characteristics in human atherosclerotic plaques that associate with clinical outcome. To what extent established susceptibility loci for large artery ischemic stroke and coronary artery disease relate to plaque characteristics is thus far unknown but may point to novel mechanisms. Methods: We studied the associations of 61 established cardiovascular risk loci with 7 histological plaque characteristics assessed in 1443 carotid plaque specimens from the Athero-Express Biobank Study. We also assessed if the genotyped cardiovascular risk loci impact the tissue-specific gene expression in 2 independent biobanks, Biobank of Karolinska Endarterectomy and Stockholm Atherosclerosis Gene Expression. Results: A total of 21 established risk variants (out of 61) nominally associated to a plaque characteristic. One variant (rs12539895, risk allele A) at 7q22 associated to a reduction of intraplaque fat, P=5.09×10−6 after correction for multiple testing. We further characterized this 7q22 Locus and show tissue-specific effects of rs12539895 on HBP1 expression in plaques and COG5 expression in whole blood and provide data from public resources showing an association with decreased LDL (low-density lipoprotein) and increase HDL (high-density lipoprotein) in the blood. Conclusions: Our study supports the view that cardiovascular susceptibility loci may exert their effect by influencing the atherosclerotic plaque characteristics

    Comprehensive exploration of the effects of miRNA SNPs on monocyte gene expression

    Get PDF
    We aimed to assess whether pri-miRNA SNPs (miSNPs) could influence monocyte gene expression, either through marginal association or by interacting with polymorphisms located in 3'UTR regions (3utrSNPs). We then conducted a genome-wide search for marginal miSNPs effects and pairwise miSNPs × 3utrSNPs interactions in a sample of 1,467 individuals for which genome-wide monocyte expression and genotype data were available. Statistical associations that survived multiple testing correction were tested for replication in an independent sample of 758 individuals with both monocyte gene expression and genotype data. In both studies, the hsa-mir-1279 rs1463335 was found to modulate in cis the expression of LYZ and in trans the expression of CNTN6, CTRC, COPZ2, KRT9, LRRFIP1, NOD1, PCDHA6, ST5 and TRAF3IP2 genes, supporting the role of hsa-mir-1279 as a regulator of several genes in monocytes. In addition, we identified two robust miSNPs × 3utrSNPs interactions, one involving HLA-DPB1 rs1042448 and hsa-mir-219-1 rs107822, the second the H1F0 rs1894644 and hsa-mir-659 rs5750504, modulating the expression of the associated genes. As some of the aforementioned genes have previously been reported to reside at disease-associated loci, our findings provide novel arguments supporting the hypothesis that the genetic variability of miRNAs could also contribute to the susceptibility to human diseases

    Common Polymorphisms Influencing Serum Uric Acid Levels Contribute to Susceptibility to Gout, but Not to Coronary Artery Disease

    Get PDF
    BACKGROUND:Recently, a large meta-analysis including over 28,000 participants identified nine different loci with association to serum uric acid (UA) levels. Since elevated serum UA levels potentially cause gout and are a possible risk factor for coronary artery disease (CAD) and myocardial infarction (MI), we performed two large case-control association analyses with participants from the German MI Family Study. In the first study, we assessed the association of the qualitative trait gout and ten single nucleotide polymorphisms (SNP) markers that showed association to UA serum levels. In the second study, the same genetic polymorphisms were analyzed for association with CAD. METHODS AND FINDINGS:A total of 683 patients suffering from gout and 1,563 healthy controls from the German MI Family Study were genotyped. Nine SNPs were identified from a recently performed genome-wide meta-analysis on serum UA levels (rs12129861, rs780094, rs734553, rs2231142, rs742132, rs1183201, rs12356193, rs17300741 and rs505802). Additionally, the marker rs6855911 was included which has been associated with gout in our cohort in a previous study. SNPs rs734553 and rs6855911, located in SLC2A9, and SNP rs2231142, known to be a missense polymorphism in ABCG2, were associated with gout (p=5.6*10(-7), p=1.1*10(-7), and p=1.3*10(-3), respectively). Other SNPs in the genes PDZK1, GCKR, LRRC16A, SLC17A1-SLC17A3, SLC16A9, SLC22A11 and SLC22A12 failed the significance level. None of the ten markers were associated with risk to CAD in our study sample of 1,473 CAD cases and 1,241 CAD-free controls. CONCLUSION:SNP markers in SLC2A9 and ABCG2 genes were found to be strongly associated with the phenotype gout. However, not all SNP markers influencing serum UA levels were also directly associated with the clinical manifestation of gout in our study sample. In addition, none of these SNPs showed association with the risk to CAD in the German MI Family Study

    The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, Cardiovascular, and Anthropometric Traits

    Get PDF
    PMCID: PMC3410907This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms

    Assessing the causal association of glycine with risk of cardio-metabolic diseases.

    Get PDF
    Circulating levels of glycine have previously been associated with lower incidence of coronary heart disease (CHD) and type 2 diabetes (T2D) but it remains uncertain if glycine plays an aetiological role. We present a meta-analysis of genome-wide association studies for glycine in 80,003 participants and investigate the causality and potential mechanisms of the association between glycine and cardio-metabolic diseases using genetic approaches. We identify 27 genetic loci, of which 22 have not previously been reported for glycine. We show that glycine is genetically associated with lower CHD risk and find that this may be partly driven by blood pressure. Evidence for a genetic association of glycine with T2D is weaker, but we find a strong inverse genetic effect of hyperinsulinaemia on glycine. Our findings strengthen evidence for a protective effect of glycine on CHD and show that the glycine-T2D association may be driven by a glycine-lowering effect of insulin resistance.N. G. F. and F.I. acknowledge funding from Medical Research Council Epidemiology Unit MC_UU_12015/5. N.G.F. and N. J. W. acknowledge funding from the NIHR Biomedical Research Centre Cambridge: Nutrition, Diet, and Lifestyle Research Theme (IS-BRC-1215-20014). S. B. is supported by Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (204623/Z/16/Z). J. D. is funded by the National Institute for Health Research [Senior Investigator Award]. N. J. W. and C. L. acknowledge funding from the Medical Research Council Epidemiology Unit (MC_UU_12015/1)
    • …
    corecore