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Abstract: Aims: Genetic disposition and lifestyle factors are understood as independent
components underlying the risk of multiple diseases. In this study, we aim to
investigate the interplay between genetics, educational attainment - an important
denominator of lifestyle - and coronary artery disease (CAD) risk.
Methods and Results: Based on the effect sizes of 74 genetic variants associated with
educational attainment, we calculated a ‘genetic education score’ in 13,080 cases and
14,471 controls and observed an inverse correlation between the score and risk of
CAD (p=1.52x10-8; odds ratio [OR] 0.79 (95% confidence interval [CI] 0.73-0.85) for
the higher compared to the lowest score quintile). We replicated in 146,514 individuals
from UK Biobank (p=1.85x10-6) and also found strong associations between the
‘genetic education score’ with ‘modifiable’ risk factors including smoking (p=5.36x10-
23), body mass index (p=1.66x10-30), and hypertension (p=3.86x10-8). Interestingly,
these associations were only modestly attenuated by adjustment for years spent in
school. By contrast, a model adjusting for BMI and smoking abolished the association
signal between the ‘genetic education score’ and CAD risk suggesting an intermediary
role of these two risk factors. Mendelian randomization analyses performed with
summary statistics from large genome-wide meta-analyses and sensitivity analysis
using 1271 variants affecting educational attainment (OR 0.68 for the higher compared
to the lowest score quintile; 95% CI 0.63-0.74; p=3.99x10-21) further strengthened
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these findings.
Conclusion: Genetic variants known to affect educational attainment may have
implications for a health-conscious lifestyle later in life and subsequently affect the risk
of coronary artery disease.
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Translational Perspective  

Genetic disposition and lifestyle factors are understood as independent components 

underlying the risk of multiple diseases. An important denominator of lifestyle is 

educational attainment. Here we utilized genetic variants affecting educational 

attainment as an instrument for studying the interplay between genetics, lifestyle and 

coronary artery disease (CAD). We found strong associations between the ‘genetic 

education score’ and CAD and its risk factors which, interestingly, are only partially 

explained by years spend in school. Our study shows that genetic variants known to 

affect educational attainment may have broad implications for a health-conscious 

lifestyle later in life and the risk of CAD.  

'Take-home figure':.  

 
 'One-sentence Summary': In the present study, we have found that genetic factors 

known to affect educational attainment may in parallel influence the prevalence of CAD 

possibly through its influence on the lifestyle-related risk factors.  

Translational Perspective
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Introduction 

Epidemiological studies have repeatedly observed an inverse association between years of school 

education and coronary artery disease (CAD) risk1, 2. A number of detrimental lifestyle factors including 

smoking, unhealthy diet and less recreational physical activity – observed with less educational attainment 

– have been considered for explaining this association3. However, the correlation between length of school 

education and CAD risk is difficult to untangle3. Indeed, compulsory programmes that increased the years 

of school education were without measurable effects on CAD risk4, 5.   

The genetics of CAD as well as those of educational attainment have been widely researched in 

recent years6-12. Both, are considered as complex traits with a strong genetic component6-9. In parallel, 

Mendelian randomisation has evolved as a valuable tool for investigation of causal relationships between 

risk factors and complex traits13. This raised our interest to explore the genetic impact of educational 

attainment on coronary disease risk.  

In the present study, we specifically analyzed whether there is a genetic component underlying the 

relationship between higher educational attainment and lower CAD risk (Extended Data Figure 1A, blue 

block). We also aimed to study the potential intermediate role of lifestyle-related risk factors in linking 

(the genetic basis of) educational attainment with the prevalence of CAD in the European population 

(Extended Data Figure 1B, green block).   
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Methods 

Study design 

The study addresses two major questions. First, we explored the association between the genetic 

component of educational attainment and CAD as well as its related risk factors. As complex traits are 

considered to have polygenic genetic architecture, we resorted to the genetic risk score approach to get a 

cumulative surrogate estimate for the genetic component of educational attainment, utilizing (n=74 and 

n=1271) independent single nucleotide polymorphisms (SNPs) reported by two recent published genome-

wide association studies (GWAS) for educational attainment with the measurement as the years spent in 

school (EduYears)12, 14. The median effect size of a single SNP corresponds to 1.7 weeks of schooling, and 

a combined polygenic score explains around 11% of the variance in EduYears12. Based on genotype data 

from multiple cohorts we generated for each individual a ‘genetic education score’ which reflects the 

integrated effect of all SNPs affecting EduYears and associated this score with the susceptibility of CAD 

and other cardiovascular traits by regression analyses.  

Definition of educational attainment 

Educational attainment is the visible output of education systems and a measure of their success, which 

varies among different countries, as is shown by the European statistics about education 

(http://ec.europa.eu/eurostat/statistics-explained/index.php/Educational_attainment_statistics). In UKBB, 

by far the largest cohort explored in our study, educational attainment was available on all cases and 

controls for subsequent analyses. This information was not available in the nine CAD case-control studies 

used for discovery. As a standard, the International Standard Classification of Education (ISCED) is 

nowadays taken as a measure of educational attainment. The details of ISCED codes obtained from UK 

Biobank phenotypes are described in the Supplementary Text. In the context of genetic association, Okbay 

et al.14 have examined two possible indicator variables of educational attainment, namely EduYear, i.e. a 

continuous variable measuring the number of years of schooling completed, and College, i.e. a binary 

variable measuring the successful completion of college education. They revealed that EduYears was 
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better powered for detecting associations. This EduYear measurement has also been adopted in the latest 

GWAS for educational attainment12. Hence, in the present study, we also calculated real EduYears - a 

continuous variable measuring the number of years of schooling completed to represent educational 

attainment - using the same methods that were used in the report that led to the identification of the 

reported EduYear-SNPs14.  

Genetic risk score analysis 

Individual-level genotype data were collected from nine CAD case-control studies15-21 for discovery. All 

subjects were of European origin, most coming from Germany and England, and gave written informed 

consent before participating. Individual-level genotype data were also collected from UK Biobank22 for 

replication. All data were utilized for sensitivity analysis with the samples size of UK Biobank increased 

from 150k to 500k of the latest release. Details on the participating studies and pre-processing methods 

used are shown in the Supplement Text.  

Based on the 74 EduYear SNPs reported by Okbay et al14 (Extended Data Table 1), a weighted 

genetic risk score was calculated to evaluate cumulatively the genetic underpinnings of educational 

attainment and their effect on the risk of CAD. We gave a value from minimum 0 to maximum 2 for every 

SNP for every individual according to the sum of the posterior probabilities from the imputation files to 

indicate the number of EduYear-increasing alleles and multiplied the number of alleles by the reported 

effect sizes. Then we totalled these values for each individual across all 74 SNPs to generate a weighted 

genetic risk score (wGRS) of EduYears, namely ‘genetic education score’. Afterwards, all the individuals 

were grouped into quintiles based on their ‘genetic education score’. Likewise, in the sensitivity analysis 

we constructed a second ‘genetic education score’ based on the 1216 SNPs* independent of the initial 74 

SNPs* reported by Lee et al12, as well as the full 1271 SNPs* (*out of the initially reported 7414 some 

SNPs were not found in the list of 1271 SNPs shown to be genome-wide significantly associated with 

EduYears in the most recent analysis12 Extended Data Table 5). 
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 5 

Logistic regression was performed to evaluate the effect size of the wGRS on the risk of CAD in each 

study. The wGRS was modelled as a continuous variable and standardized into Z-scores (centred and 

scaled to have a mean of 0 and standard deviation (SD) of 1) (Extended Data Figure 2). As population 

stratification or batch effects, which could bias prediction accuracy in the genetic risk score analysis23, 

should be considered as covariates, we included in the present study, the top two (for nine case-control 

studies) or five (for UK Biobank) principle components based on autosomal genotypes in order to adjust 

for the possible presence of population stratification. In all regression analysis for UK Biobank, genotype 

array (UK Biobank Axiom array vs UK BiLEVE array) was included as an additional covariate to account 

for the differences between the two GWAS arrays used for genotyping of participants. The regression was 

performed for each study separately and afterwards a fixed-effect meta-analysis was performed to 

combine the effects across all studies (Figure 1, Extended Data Figure 3A).  

Using the pooled genotype data of nine CAD case-control cohorts, same logistic regression was 

performed with the cohort center and top 10 principle components included as additional covariates, so as 

to estimate the variance explained by the ‘genetic education score’ on CAD onset in the measure of the 

incremental McFadden’s pseudo R2. The incremental part was calculated as the pseudo R2 difference 

between the regression with and without the score included. The 95% confidence intervals for pseudo R2 

were estimated via 1,000 times bootstrapping. 

The ‘genetic education score’ reflects effects of SNPs that were identified for their association 

with EduYears in the first place14. However, these SNPs may have other (pleiotropic) effects, which may 

also come into place when the ‘genetic education score’ is associated with CAD risk. Therefore, the real 

number of years spend in school (EduYears) was extracted for each individual and included as adjustment 

to estimate the effect size of the ‘genetic education score’ on the susceptibility of CAD and multiple 

traits (Extended Data Figure 1, blue block). With the aim to further characterize the interplay among the 

genetic basis of educational attainment, the risk of CAD and its related lifestyle risk factors, we included 

additional adjustments of possible confounders such as lifestyle and risk factors, to check the 

(in)dependence of the effect of the genetic component of educational attainment on CAD risk.  
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 6 

Using UK Biobank data, regression analyses were also performed to evaluate the effect size of the 

wGRS on multiple cardiovascular risk factors, namely hypertension, hypercholesterolemia, type 2 

diabetes, smoking (ever smokers vs. never smokers), and BMI. Furthermore, the same logistic regression 

(risk factors measured in binary value) or linear regression (risk factor measured in continuous values, i.e. 

BMI here) model was performed with adjustment for EduYears, BMI and smoking (ever smokers vs. 

never smokers [reference group]). The definition of each risk factor is described in Supplementary Text. 

The same regression of ‘genetic education score’ and CAD and its risk factors was performed with 

EduYears (defined in Suplementary Text) included as a covariate. We also tested the association between 

a ‘genetic CAD score’ and real EduYears in UK Biobank to investigate the possibility for a reverse 

causation. (Extended Data Table 2) 

Mendelian randomization analysis 

Mendelian randomization (MR) analyses were performed in order to investigate the genetic causal effect 

between educational attainment and CAD or cardiovascular risk factors. The detailed list of the 74 SNPs 

and their reported effect sizes of EduYear are recorded in Extended Data Table 3. The effect sizes of all 

these EduYear-SNPs for CAD were extracted from the summary statistics of the CARDIoGRAMplusC4D 

meta-analysis24. Summary statistics of the EduYear-SNPs for cardiovascular risk factors were extracted 

from various consortia, including GIANT (BMI)25, TAG (smoking behaviour)26, and GLGC (LDL-

cholesterol, HDL-cholesterol, triglycerides, total cholesterol level)27. A description of the sample-size 

used in each GWAS and the corresponding phenotypes are shown in Supplementary Text. 

In all traits the effect size for each SNP was first aligned to the reported EduYear-increasing 

allele. Then the genetic causal effect was estimated by regressing the SNP-EduYear effect (exposure) to 

the SNP effect of CAD or risk factors (outcome) in several methods. Inverse-variance-weighted fixed-

effect meta-analysis (IVW) is the most classic one in MR to combine individual-SNP beta estimates28. 

Unfortunately, despite of its efficiency IVW estimate will be biased when there exists genetic variant as an 

invalid instrumental variable (IV). In light of this, modern MR methods such as MR-Egger29 and weighted 
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median30 have been developed to supplement the IVW performance to account for violations of IV 

assumptions and adjust for potential pleiotropic effects. Therefore, we employed all three methods as 

recommended by Bowden et al30, with MR-egger which has substantially less efficiency and low power to 

suggest whether a causal effect is present or not, and with weighted median which has generally greater 

power and efficiency to obtain the unbiased estimates.  

Furthermore, we performed sensitivity analysis by applying various filters on the original 

selection of 74 SNPs, i.e. to exclude the SNPs at loci known to affect the risk of CAD, as well as loci 

known to affect the risk of cardiovascular risk factors (Extended Data Table 3). 

 

Results 

We studied 13,080 CAD cases and 14,471 controls from 9 genome-wide association studies (GWAS) on 

the basis of previously published array data15-20, 24. All participants were of Western European decent. The 

majority of participants came from the UK or Germany (77.8%). Two multinational studies, MIGen and 

Cardiogenics, also contributed to our sample with 12.1%, 5.5%, 2.3%, 1.9%, and 0.4% of individuals 

coming from Italy, USA, Spain, Northern Europe, and France, respectively. A detailed cohort description 

can be found in the Supplementary Text. For each subject we generated individually a weighted ‘genetic 

education score’, based on 74 single nucleotide polymorphisms (SNPs) that have been genome-wide 

significantly associated with educational attainment (EduYear-SNPs) through a GWAS on this trait14. The 

score was normally distributed in the participants (Extended Data Figure 2). Summary statistics for the 

association of the ‘genetic education score’ with CAD in each study are shown in Figure 1. As a result of 

meta-analysis, a higher ‘genetic education score’ correlated with a lower odds of coronary disease 

(p=1.52x10-8 for fixed-effect meta-analysis). Next, all individuals were grouped into quintiles of the score. 

Figure 2 shows a constant decline of CAD risk with increasing quintiles. Individuals in the highest quintile 

had about 21% lower odds than those in the lowest quintile, with individuals in the intermediate quintiles 

ranging in between (p=7.66x10-9 for trend test across quintiles, Figure 2). Sex-stratified analysis 
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confirmed this inverse correlation in both males and females (Extended Data Table 4). For sensitivity 

analysis we extracted a new list of 1271 SNPs reported by a larger scale GWAS of educational attainment 

published during the revision process, and studied a second ‘genetic education score’ based on n=1216 

(out of 1271) SNPs who were all in low linkage disequilibrium (r2<0.5) with the 74 EduYear-SNPs which 

we had studied initially (Extended Data Table 5). We observed an even enlarged inverse association 

between the second ‘genetic education score’ and CAD risk, with individuals in the highest quintile had 

about 31% lower odds than those in the lowest quintile (Extended Data Table 6). Quantitatively, the full 

‘genetic education score’ in our data based on 1271 SNPs explains 0.37 % variance [95% CI 0.27-0.51] of 

CAD onset (Methods).  

We then set to replicate and extend our findings in a large population cohort, namely the UK 

Biobank22 (Supplementary Text). We successfully replicated the primary association between ‘genetic 

education score’ and CAD considering 13,183 CAD cases and 133,203 controls of European ancestry in 

this study (p=1.85x10-6, Table 1; p=7.34x10-13 for meta-analysis with the discovery set, Extended Data 

Figure 3A and Methods). Sensitivity analysis with the second ‘genetic education score’ based on a more 

recent release of the UK Biobank data (38,489 CAD cases and 416,951 controls) also replicated our initial 

finding (p=1.02x10-122; p=3.88x10-132 for meta-analysis with the discovery set, Extended Data Table 6). 

We also looked at the countries separately, in that we meta-analysed data from Germany (six 

German MI family studies), the UK (WTCCC, UK Biobank) and a mixture of Western countries (MIGen, 

Cardiogenics). We observed directionally identical effects in these three groups despite substantial 

differences in the educational systems (http://ec.europa.eu/eurostat/statistics-

explained/index.php/Educational_attainment_statistics) (p=1.05x10-6 for the UK; p=5.30x10-5 for 

Germany; p=2.40x10-5 for the mixture of several other Western countries, Extended Data Figure 3B). 

 Phenotypically, real EduYears was also significantly associated with CAD (odds ratio 0.72 for 1 

SD increase of education years, 95% CI 0.71, 0.74, p=2.65x10-281) (Extended Data Table 7). However, 

adjustment for real EduYears had only a small effect on the association between the ‘genetic education 
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score’ and CAD (Table 1), suggesting that the ‘genetic education score’ mediates its effects on CAD risk 

not entirely through its effects on years spend in school.  

We next asked whether there also exists an effect of ‘genetic education score’ on traditional CAD 

risk factors in UK Biobank (with the exception of lipid levels, which were not available), and whether the 

effects were likewise partially independent of the phenotype EduYears. We found strong associations of 

the ‘genetic education score’ with hypertension, body mass index (BMI), and smoking whereas other risk 

factors tested gave nominally significant signals (Table 1). Like with CAD, the phenotype real EduYears 

was also significantly associated with most cardiovascular risk factors (Extended Data Table 7). However, 

adjustment for this measure only marginally attenuated the association signal between the ‘genetic 

education score’ and the most strongly associated risk factors (e.g. BMI and smoking status; Table 1), 

again suggesting that school education by itself does not mediate exclusively the association between the 

‘genetic education score’ and risk factors (i.e. higher BMI and smoking) (Extended Data Figure 4, black 

lines).  

 Given the strong association of ‘genetic education score’ with BMI and smoking, even after 

adjustment for real EduYears in UK Biobank (Table 1), we next tested the effect of the ‘genetic education 

score’ on CAD risk, hypertension, hypercholesterolemia, and type 2 diabetes with additional adjustment 

for these two risk factors. The smoking and BMI adjusted model resulted in a marked attenuation of the 

association signals for the ‘genetic education score’ with CAD (OR 0.992 [0.973-1.011], p=0.407), and 

also with the other risk factors (Extended Data Table 8), suggesting that the effect of the ‘genetic 

education score’ on CAD risk may be mainly mediated through its effects on these two risk factors. 

In order to investigate the possibility for a reverse causation we also tested the association 

between a ‘genetic CAD score’31 and real EduYears in UK Biobank (Supplementary Text and Methods) 

but found no such signal (p=0.58), making reverse causation unlikely.  

To substantiate our previous observations that the genetic component of educational attainment 

has significant impact on CAD risk and that this effect may be mediated through its effects on 
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intermediate risk factors, we also performed Mendelian randomisation (MR) analyses. We used summary 

statistics from well-powered GWAS for CAD24, BMI25, smoking behaviour26, LDL-cholesterol, HDL-

cholesterol, triglycerides, total cholesterol level27, to regress the SNP-education effect (exposure) with the 

SNP-effects on CAD and its risk factors (outcome), and then several modern methods were employed to 

combine individual-SNP beta estimates (Supplementary Text and Methods). Using the inverse-variance 

weighted (IVW) and weighted median methods, we observed that risk of CAD decreased by about a third 

per 1-standard deviation (SD) increment in the education years, with odds ratios of 0.64 (95% CI: 0.55, 

0.76, p=9.5 x10-7) and 0.67 (95% CI: 0.55-0.82, p=0.00013) respectively. Among the tested risk factors, 

BMI (p=0.04 for IVW, p=0.01 for weighted median) and triglycerides (p=0.03 for IVW, and p=0.06 for 

weighted median) were also significantly associated with the ‘genetic education score’ in both methods. 

Smoking behaviours measured as either number of cigarettes smoked per day or ever-smoked in the public 

available data collection from 201026, showed marginal genetic association with educational 

attainment (p-value about 0.06) in either method, which could be due to lack of power (Extended Data 

Table 9). 

For MR sensitivity analyses we removed from the 74 EduYear-SNPs which had marginal 

associations (p<0.01 in the published summary statistics) with CAD24 (4 SNPs), BMI25 (8 SNPs), 

triglycerides27 (5 SNPs), and smoking behaviours26 (3 SNPs) (Extended Data Table 3). The final 56 

EduYear-SNPs still showed a causal effect between higher educational attainment (1-SD increase in 

education years) and 28% lower risk of CAD (odds ratio for weighted median method of 0.72, 95% CI 

0.57, 0.90, p=4.3x10-3), which further endorsed the effect found in the initial MR analysis (Extended Data 

Figure 5).  

 

Discussion 

Educational attainment is well known for its inverse association with cardiovascular diseases1, 2,3. Here we 

show that a genetic score based on cumulative effects of variants associated with the number of years 
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spend in school14 is associated with multiple cardiovascular risk factors and the manifestation of CAD. 

Interestingly, these associations were only ameliorated by adjustment for real years of schooling 

suggesting that the genetic component of educational attainment may have more complex phenotypic 

consequences that all contribute to the observed statistical findings (Figure 3 and Extended Data Figure 

4A).  Furthermore, we show that the genetic effect between educational attainment and CAD risk is 

partially mediated via specific lifestyle and risk factors (BMI and smoking status) (Figure 3).   

Notably, our findings imply that the health benefits related to higher educational attainment or 

more years in education per se might have been over-estimated, given that the associations observed for 

the ‘genetic education score’ with CAD risk as well as a number of health-related outcomes are not 

exclusively mediated by EduYears. Our data suggest these health-related outcomes are in part modulated 

by certain genetic variants, which lead, on the one hand, to more EduYears, and on the other hand, to 

characteristics that are independent of EduYears but go along with a healthier lifestyle (Figure 3). This 

notion possibly explains why previous compulsory programmes that increased the years of school 

education were not showing a measurable reduction of CAD risk 4, 5. However, we do not want to 

conclude that a causal relation between EduYears and CAD risk does not exist. Indeed, the effect size of 

the ‘genetic education score’ and CAD was markedly weakened – but nevertheless remained to be 

significant – after adjustment for actual EduYears. 

Indeed, the ‘genetic education score’ may have broader implications since it may relate to a 

number of socioeconomic measures in respective individuals as well as the parental generation (Extended 

Figure 4B illustrates some hypothetical consequences)1, 2,3,8, 32-40. Given such complexity of phenotypes 

studied here, our findings fall short delineating the precise mechanism for each SNP. However, we 

uncover that smoking and obesity may be key intermediary factors for the link between the ‘genetic 

education score’ as a whole and CAD risk, as they not only blunted the association but also appeared to be 

very robust in mediating the effects of the score on other cardiovascular risk factors, including 

hypertension, hypercholesterolemia, and type 2 diabetes (Extended Data Table 8). Given these and 

probably more intermediate factors to be discovered we obviously do not aim to implement an actionable 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 12 

genetic test in a clinical environment but rather aim to claim a genetic link between educational 

attainment, intermediate risk factors, and CAD risk. 

Since both intermediate risk factors – smoking and obesity – reflect modifiable health-relevant 

lifestyle decisions, we hypothesize that addressing these factors in Western societies could attenuate 

largely the inequality of CAD risk related to the EduYear-SNPs. Our findings therefore further suggest 

that genetics contribute to the variability of health-relevant lifestyles in Western societies and thereby 

have an effect on CAD risk later in life (Figure 3). Consistent with our findings, e.g. Marioni et al reported 

a higher life expectancy in parents of subjects with a higher ‘genetic education score’37 and Arden et al 

revealed that the association between a longer lifespan and intelligence is mostly genetic38. In synthesis 

these observations suggest that genetic components and their underlying biological traits may influence 

the length of educational attainment but also the decision-making process in lifestyle choices that underpin 

cardiovascular risk factors such as smoking and obesity33. Our findings also emphasize that future studies 

on factors contributing to CAD risk should pay more attention to a standardized data collection on 

educational attainment as a potential factor.  

We focused our analyses on CAD and cardiovascular outcomes. However, the lifestyle-related 

intermediary phenotypes such as smoking and obesity may have implications for the risk of other complex 

conditions as well, e.g. malignant, pulmonary or infectious diseases. In an exploratory analysis we also 

observed a strong association between the ‘genetic education score’ and chronic obstructive pulmonary 

disease (COPD) in UK Biobank but no statistically significant association with peripheral arterial disease, 

lung cancer or stroke (Extended Data Figure 6). Thus, the health implications of the EduYear-SNPs may 

be even be broader.  

Our study has a number of limitations. Firstly, the level of educational attainment and the number 

of years spend in school are different among countries. Likewise, lifestyle, cultural background and 

environmental exposures also differ between countries41. The EduYear-SNPs utilized in this study were 

identified from a GWAS meta-analysis largely based on individuals of European descent14. To avoid any 
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extrapolation bias we have restricted our analysis to individuals from the UK, Germany and other Western 

European countries, which limits the interpretation for other ethnic groups or countries. Secondly, it is 

likely that a number of further genetic and socioeconomic factors8 are involved in the interplay of 

educational attainment, intermediary factors and prevalence of CAD (Extended Data Figure 4B). 

Specifically, environmental exposures may differ between countries and could also be confounders of the 

genetic effects of education on CAD risk, which we lacked investigating in the current study. Moreover, 

we arbitrarily restricted our analysis to EduYear-SNPs with established genome-wide significance for 

association with educational attainment. It is likely that larger meta-analyses will identify more genetic 

variants affecting school attainment as well as other socioeconomic factors42, such that the genetic effects 

unravelled here are likely to underestimate the true effect. Thirdly, many of the lifestyle and risk factors 

reported in the UK Biobank are self-reported and not externally validated, which might have 

underestimated some of the effects. Calculating years of school attainment for participants of the UK 

Biobank may also have some limitations14. We employed the same methods that were used in the report 

that led to the identification of the EduYear-SNPs14. The fact that years of school attainment were also 

strongly related to CAD and its risk factors supports the validity of this calculation. Next, the currently 

available functional information on the EduYear-SNPs is fairly basic. It includes the genomic position, 

allele frequencies, genes in the vicinity and signals from GWAS studies on other traits including CAD and 

risk factors (Extended Data Table 3). It has been inferred that the ‘genetic education score’ may reflect 

motivation39, cognitive ability35, 36, as well as an array of biological pathways14 which also could influence 

lifetime cardiovascular risk. However, we still have no precise information on the mechanisms by which 

the EduYear-SNPs led to differences in educational attainment or even more complex traits such as 

smoking and therefore coronary disease risk. We annotated these SNPs to physically nearby genes and 

putative functions (Extended Data Table 1), with the hope to provide some information on the biological 

context and the diversity of mechanisms underlying the SNPs affecting educational attainment. Future 

research will need to unravel how these variants affect educational attainment or the prevalence of 

smoking and obesity.   
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Finally, association findings in such complex settings – even if they are based on genetic variants 

which allow inferring directionality in terms of a Bayesian approach – may reflect reverse causation. In 

this sense a reflection of the Bradford Hill Criteria43 may be of help. The associations reported here show 

1.) substantial strength (effect size), i.e. over 20% difference between the highest/lowest quintile, 2.) 

consistency (reproducibility) as they were reproduced in an independent sample, and with an independent  

set of SNPs. 3.) specificity, i.e. causation was built on the Mendelian randomization approach, 4.) 

temporality, i.e. genetics come first - by nature, 5.) a biological gradient, i.e. there is a stepwise effect 

across the quintiles, 6.) plausibility, i.e. the chain of events between  SNPs —> school attainment —> 

smoking/obesity —> CAD is clearly plausible, 7.) coherence with the literature on educational attainment 

and cardiovascular risk, and 8.) analogy in that the effect size of ‘educational attainment’ on ‘CAD risk’ is 

analogous with that of other risk factors. We have to admit, however, that 9.)  experimental validation 

cannot be obtained in this setting. Rather, we want to suppose that with the event of large-scale GWAS 

statistical significance—not necessarily the magnitude of association—is the accepted benchmark for 

judging the strength of an observed association between a genetic variant and a phenotype, and thus its 

potential causality 44.  

Genetic and lifestyle factors are often contrasted regarding their influence on coronary disease 

risk31. An important determinant of lifestyle and related health outcomes is educational attainment. Our 

study revealed that the genetic basis of educational attainment – like educational attainment itself6-9, 14, 31, 37 

– is a partly independent element linked with lifestyle factors affecting CAD risk. Thus, our data give rise 

to the hypothesis that the attitude towards a health-conscious lifestyle includes an inherited component 

affecting educational attainment and decision making later in life, a finding which may have broad 

implications for battling cardiovascular risks in Western societies.  
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Figure legends 

 
Figure 1. ‘Genetic education score’ and risk of coronary artery disease.  

A weighted genetic risk score (wGRS) based on 74 genetic variants affecting length of education reported 

by Okbay et al14 (“genetic education score”) was calculated in individuals from nine case-control studies 

for CAD (total n=27,551). The calculation of the score is described in Methods, and the description for 

these 9 studies is provided in Supplementary Text. Logistic regression was performed to evaluate the 

effect size of the wGRS on the risk of CAD in each study separately and afterwards meta-analysis was 

performed to combine the effects across nine studies. Forest plot displays a consistent inverse correlation 

across studies between the ‘genetic education score’ and odds of CAD.  

Figure 2. Inverse relationship of genetically determined educational attainment and risk of 

coronary artery disease.   

Individuals from each of the nine studies were grouped into quintiles based on their weighted genetic risk 

score for school attainment, with quintile 1 indicating the lowest genetic score and quintile 5 the highest. 

Odds ratios, shown with and 95% confidence intervals, for CAD were 20.8% lower in the quintile with the 

highest genetically determined educational attainment as compared to those with the lowest ‘genetic 
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education score’. The distribution of all cases (red bars) with CAD is decreasing with an increasing 

‘genetic education score’, while that of all controls (blue bars) has an opposite trend. P-value=7.66x10-9 

was obtained from Cochran–Armitage trend test.  

Figure 3. Interpretation of findings. 

Educational attainment is partially modulated by common genetic variants6-9, 14 and inversely associated 

with cardiovascular diseases1, 2. In the present study, we have found that the common genetic variants that 

influence length8 of school education are also associated with cardiovascular risk factors and the 

manifestation of CAD. Importantly, the associations between genetic variants with CAD and its risk 

factors remained to be significant after adjustment for actual length of education. Thus, genetic factors 

may also influence decision making for a health-conscious lifestyle later in life and affect the prevalence 

of CAD through its risk factors.  

 

Text tables 

Table 1. Associations between the ‘genetic education score’ and cardiovascular conditions in UK 

Biobank. 

  Odds ratio [ 95% CI] p 
realEduYear-

adj 

Coronary artery disease 
0.96 [0.94, 0.97] 1.85E-06 no 

0.98 [0.96, 1.00] 0.014 yes 

BMI 
-0.15 [0.01] * 1.66E-30 no 

-0.12 [0.01] * 7.54E-20 yes 

Smoking 
0.95 [0.93, 0.96] 5.36E-23 no 

0.96 [0.95, 0.97] 7.68E-12 yes 

Hypercholesterolemia 
0.98 [0.96, 0.99] 3.42E-04 no 

0.99 [0.98, 1.01] 0.319 yes 
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Hypertension 
0.97 [0.96, 0.98] 3.86E-08 no 

0.99 [0.98, 1.00] 0.007 yes 

Type 2 diabetes 
0.96 [0.93, 0.98] 1.73E-04 no 

0.98 [0.95, 1.00] 0.045 yes 

Regression models of the ‘genetic education score’ on coronary disease risk and cardiovascular risk 

factors without (no - unadjusted) and with adjustment (yes) for years of school education completed (real 

EduYear-adjusted). All models were also adjusted for the first 5 principal components and genotyping 

array.  

* Odds ratio [95% CI] is reported for each binary phenotype (except for BMI) as per one SD increase in 

the ‘genetic education score’. The slope [SE] of the linear regression is reported for the continuous 

phenotype – BMI per one SD increase in the `genetic education score´.  

Smoking: ever smokers vs. never smokers. BMI in kg/m2. CI: confidence interval. SE: standard error.
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Figures  

 

Figure 1. ‘Genetic education score’ and risk of coronary artery disease.  
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Figure 2. Inverse relationship of genetically determined educational attainment and risk of coronary 

artery disease.   
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Figure 3. Interpretation of findings. 
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Supplementary reference 

 

1. Description of data sets and cohorts 

 

1.1 CAD case-controls studies 

Individual level data were obtained from nine case-control studies for coronary artery disease. Most 

individuals came from Germany: the German Myocardial Infarction Family Studies (GerMIFS) I1, 

II2, III3 (KORA), IV4, V5, VI6, and/or England: Wellcome Trust Case Control Consortium 

(WTCCC)7 and/or France: Cardiogenics8. Others included subjects from Italy and the United 

States: Myocardial Infarction Genetics Consortium (MIGen)9. All subjects were of Western 

European descent and gave a broad written informed consent before participating in these studies 

on the understanding of genetic underpinnings of cardiovascular disease. All individuals provided 

informed consent that specifically addresses that the materials will be used for studying the 

effect of genetic variants on coronary risk. And all respective studies have obtained IRB 

approval from their local Ethical Committees. In the all German MI Family studies, 

Cardiogenics, WTCCC and MIGen, the information on CAD manifestation was validated by 

medical records. The detail assessment of CAD was given in the respective references. 

Genome-wide genotype data and associated phenotype data for GerMIFS I-VI were collected by 

our group. Data for MIGen were obtained via the database of Genotypes And Phenotypes (dbgap)10 

(project ID #49717-3). Data for WTCCC and Cardiogenics were obtained via the Leducq network 

“CADgenomics” (https://www.fondationleducq.org/network/understanding-coronary-artery-

disease-genes/). A summary of individual statistics is shown below and more detailed cohort 

descriptions could be sourced from the corresponding references. 

https://www.fondationleducq.org/network/understanding-coronary-artery-disease-genes/
https://www.fondationleducq.org/network/understanding-coronary-artery-disease-genes/
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Study  

CAD cases Controls 

N Female N (%) N Female N (%) 

GerMIFSI 622 207 (33.2) 1551 795 (51.3) 

GerMIFSII 1192 244 (20.5) 1256 604 (48.1) 

GerMIFSIII 1055 212 (20.1) 1441 696 (48.3) 

GerMIFSIV 954 336 (35.2) 1136 697 (61.4) 

GerMIFSV 2437 593 (24.3) 1574 827 (52.5) 

GerMIFSVI 1637 492 (30.1) 1180 607 (51.4) 

Cardiogenics 382 49 (12.8) 404 239 (59.1) 

WTCCC 1900 395 (20.8) 2911 1481 (50.9) 

MIGen 2901 646 (22.3) 3018 733 (24.3) 

 

1.2 UK-Biobank 

UK Biobank (UKBB) was established to improve understanding of the causes of common diseases 

including CAD (www.ukbiobank.ac.uk/) and completed the recruitment of 502,713 (94% of self-

reported European ancestry) individuals aged 40-69 years across England, Scotland and Wales 

between 2005 and 2010 (94% of self-reported European ancestry). UKBB adopted the current 

worldwide practice of consenting subjects using a ‘broad informed consent’ from 

(http://www.ukbiobank.ac.uk/wp-content/uploads/2011/06/Consent_form.pdf) to cater 

both for technological advances as well as the ability to maximise the use of data i.e. by 

addressing a broad spectrum of scientific questions. This consent covers the present research 

question. UKBB covers the thousands of phenotypes collected. In addition to self-reported 

disease outcomes as well as extensive health and life-style questionnaire data, UKBB participants 

are being tracked through their NHS records and national registries (including cause of death and 

Hospital Episode Statistics [HES]). In July 2015, UKBB released genotype data imputed to the 

1000 Genomes panel for 152,249 participants profiled with a SNP array harboring 820,967 variants 

comprising a backbone of common variants optimized for imputation, a validated subset of rare 

coding variants from the Exomechip array (http://genome 

.sph.umich.edu/wiki/Exome_Chip_Design) and a set of likely functional variants or their proxies 

http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/06/Consent_form.pdf
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(e.g. GWAS catalogue). Analyses were performed on 146,514 participants of European ancestry 

after standard quality control.  

During the revision process of this manuscript, a latest version of UKBB data were released which 

increased the sample size from 150k to 500k. We utilized this larger set of data in the sensitivity 

analysis, including 455,440 participants of European ancestry after standard quality control.  

 

 

 

1.3 Consortia for coronary risk factors 

The CARDIoGRAMplusC4D consortium4 reported summary statistics of genome-wide 

association studies for coronary artery disease (CAD) for participants of multiple European states, 

the US, Iceland, Australia as well as some other countries. The ethnic origin of the vast majority 

of individuals in this consortium is European. Summary statistics for other CAD risk factors were 

obtained from other consortia, including GLGC (LDL-c, HDL-c, triglyceride, total cholesterol 

level), GIANT 11 (body-mass index), and TAG (smoking behaviour) 12. A description of 

consortium size and the corresponding phenotypes is shown here. 

 

Trait name Consortium 
Sample 

size 
PMID 

Publish 
year 

Website for 
Consortium or Data 

Coronary artery 
disease 

CARDIoGRAM-
plusC4D 

184,305 26343387 2015 
http://www.cardiogr
amplusc4d.org 

LDL cholesterol 

GLGC 188,577 24097068 2013 
http://csg.sph.umich.
edu/abecasis/public/l
ipids2013/ 

HDL cholesterol 

Triglycerides 

Total cholesterol 
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Body mass index GIANT 339,224 25673413 2015 

http://portals.broadi
nstitute.org/collabor
ation/giant/index.ph
p/Main_Page 

Ever vs never smoked 
TAG 74,053 20418890 2010 

https://www.med.un
c.edu/pgc/results-
and-downloads 

Cigarettes smoked per 
day 

 

 

 

2. Phenotypic association analysis in UK Biobank 

2.1 Definition of phenotypes  

All conditions were defined by either self-reported, hospital episode and/or death registry data. In 

UK Biobank self-reported data, CAD cases were defined if they reported having ‘vascular/heart 

problems diagnosed by doctor’ or ‘non-cancer illnesses’ as angina or heart attack. Self-reported 

operation included PTCA, or coronary artery bypass grafting (CABG). In hospital episode data and 

death registry data including primary and secondary diagnoses and operations, MI was defined as 

hospital admission or cause of death due to ICD9 410–412, ICD10 I21–I24, I25.2; PTCA was 

defined as hospital admission for PTCA (OPCS-4 K49, K50.1, K75); CABG was defined as 

hospital admission for CABG (OPCS-4 K40–K46); and angina or chronic IHD was defined as 

hospital admission or death due to ICD9 413, 414.0, 414.8, 414.9, ICD10 I20, I25.1, I25.5–I25.9. 

Exclusions were made for aneurysm and atherosclerotic cardiovascular disease using hospital 

admissions or cause of death codes ICD9 414.1, ICD 10 I25.0, I25.3, I25.4 (and not having MI, 

PTCA, CABG, Angina or chronic IHD as defined above). Controls were defined as patients who 

were not a CAD case after exclusions.  

Individuals were classified as hypertensives if their mean SBP ≥140 mm Hg or mean DBP ≥90 mm 

Hg (from the two blood pressure measurements from initial assessment), or if they were reported 
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taking blood pressure lowering medication; otherwise, they were classified as non-hypertensive. In 

detail, ICD 10 and ICD 9 codes used to define cases of CAD, type 2 diabetes, stroke, peripheral 

arterial disease, and chronic obstructive pulmonary disease, and lung cancer are given in the table 

below. For each disease, individuals who were not identified as disease cases were defined as 

controls. Smoking status was defined using self-reported data – current or ex-smokers were defined 

as ever smokers (cases), while individuals who reported no smoking were classified as non-ever 

smokers (controls). BMI was taken from initial assessment data only.  

Hypersholesterolemia was defined using self-reported data, i.e, individuals who reported either 

having high cholesterol or taking cholesterol lowering medication were defined as cases. 

Individuals with familial hypercholesterolemia (codes ICD10 E78.0, ICD9 272.0) were excluded. 

Controls were defined as individuals who were not a hypercholesterolemia case after exclusions. 

Phenotypically, educational attainment was measured as length of school education (EduYears) 

using the same methods that were used in the report that led to the identification of the EduYear-

SNPs13, that is, a continuous variable measuring the number of years of schooling completed. 

Briefly, using the mapping shown in Supplementary Table 1.2. of Okbay et al. years of schooling 

/ years-of-education equivalent for each ISCED category were calculated as: pre-primary 

education 1/0; primary education or first stage of basic education 7/1; lower secondary or second 

stage of basic education 10/2; (upper) secondary education 13/3; post-secondary non-tertiary 

education 15/4; first stage of tertiary education (not leading directly to an advanced research 

qualification) 19/5; second stage of tertiary education (leading to an advanced research 

qualification, e.g. a Ph.D.) 22/6.  

 

Disease ICD 10 codes ICD 9 codes Operation codes 
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Coronary artery disease I20 - 25 

(excluding 

I25.0, I25.3, 

I25.4) 

410 - 414 

(excluding 

414.1) 

K40 – K46, K49, 

K50.1, K75 

Type 2 diabetes  E11 25000, 25010 - 

Stroke I60, I61, I63 430, 431, 435 - 

Peripheral arterial disease I73.9 443.9 - 

Chronic obstructive pulmonary disease J44 491.2, 496.9 - 

Chronic obstructive pulmonary disease 

– extended  

J43.9, J40, J44, 

J45.9, J46, J47 

430, 431, 435, 

491.2, 496 

- 

Lung cancer C34 162 - 

  

 

2.2 phenotypic association 

Regression analyses were performed to evaluate the phenotypic association between EduYears and 

risk of CAD and its risk factors (in section 2.1). Prior analysis real years of school education were 

standardized into Z-scores (centred and scaled to have a mean of 0 and standard deviation (SD) of 

1).  

2.3 ‘genetic CAD score’ and EduYears 

Based on the 50 CAD SNPs reported by Khera et al24 (Extended Data Table 2) a weighted genetic 

risk score was calculated to evaluate the cumulative genetic effect of CAD risk on EduYears. Genetic risk 

score for CAD was estimated in the same way as the EduYear-wGRS. We gave a value from minimum 0 to 

maximum 2 for every SNP for every individual according to the sum of the posterior probabilities from the 

imputation files to indicate the number of CAD-increasing alleles and multiplied the number of alleles by 
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the reported effect sizes. Then we totalled these values for each individual across all 50 SNPs to generate a 

weighted genetic risk score of CAD.  

Linear regression was performed to evaluate the effect size of the weighted CAD genetic risk score 

on real EduYears. The genetic risk score was modelled as a continuous variable and standardized into Z-

scores (centred and scaled to have a mean of 0 and standard deviation (SD) of 1). The top five principle 

components based on autosomal genotypes and the genotyping array were included in the regression model 

as covariates.  

 

 

 

3. Processing of individual-level genotypes 

3.1 Genotyping and imputation 

 

Genotyping was performed using a range of common, commercially available genotyping arrays. 

The 1000 Genomes Phase I integrated variant (v3) set released in NCBI build 37 (hg19) coordinates 

with reference data from March 2012 (updated August 2012) was utilized as the reference panel 

for imputation in all nine case-control studies of coronary disease. 

 

UK Biobank released genotypes imputed to the 1000 Genomes panel for 152,249 participants 

profiled with a SNP array harboring 820,967 variants comprising common variants optimized for 

imputation, validated rare coding variants and sets of phenotype-associated variants or their proxies 

(e.g. GWAS catalogue). 

 

3.2 Quality control 
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The following pre-imputation QC criteria were taken in all nine case-control studies of coronary 

disease: individual call rate >= 0.98, SNP call rate > 0.98, minor allele frequency (MAF) > 0.01, 

concordant recorded and genotype-derived gender, population outliers excluded (deviate beyond 

mean ± 5*SD for top two principle components), IBD PI_HAT < 0.125 ( individuals distant away 

than third-degree relatives), heterozygosity rate within mean ± 3*SD, and deviation from Hardy-

Weinberg Equilibrium(HWE) p > 1e-6. As an essential statistical technique to estimate 

genotypes that were not directly assayed, and in order to harmonize our cohort data collected 

from different genotyping array platforms we imputed the data prior to the meta-analysis. 

After genotype QC, haplotypes were then pre-phased from genotypes with SHAPEIT2 haplotype 

estimation tool to generate the best guess haplotypes based on the given genotypes. Then the best 

guess haplotypes were forwarded to IMPUTE2 for imputation. For each bi-allelic variant [A/B] for 

each individual, the main output of IMPUTE2 reported the three genotypes AA, AB and BB in the 

form of their probabilities accounting for the genotype imputation uncertainty, instead of giving an 

fixed designation. Finally the following post-imputation QC criteria were taken: SNP call rate > 

0.98, MAF > 0.05, Hardy-Weinberg p > 1e-5. 

 

 

4. Selection of genetic variants 

4.1 Genetic variants for educational attainment 

A list of 74 lead SNPs of each genetic locus for educational attainment (EduYear-SNPs) was 

obtained from Okbay et al. of the latest GWAS publication for educational attainment13, where the 

authors have generated a list of 74 variants, and their effect-alleles, frequencies, and corresponding 

effect sizes and p-values from meta-analyses analyses. For each SNP two alleles were extracted 
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from the 1000G Reference Genome. Then for all SNPs the reported effects were aligned to the 

EduYear-increasing alleles. The detailed list is compiled and shown in Extended Data Table 1. 

 

 

4.2 Genetic variants for coronary artery disease 

A list of 50 lead SNPs of each genetic locus for CAD risk was compiled from Khera et al.14 where 

the authors have used to compose the genetic risk score of CAD. Effect-alleles, frequencies, and 

corresponding effect sizes were obtained from Supplementary Table 1 of Khera et al. The detailed 

list is compiled and shown in Extended Data Table 2. For each SNP two alleles were extracted 

from the 1000G Reference Genome. Then for all SNPs the reported effects were aligned to the 

CAD risk increasing alleles.  

 

4.3 Genetic variants proxies for risk factors  

In Mendelian Randomization analysis summary statistics were extracted for CAD and each trait 

respectively for 74 EduYear-SNPs in the corresponding genome-wide association studies. 

However, most of these GWAS meta-analysis were originally performed based on HapMap-

imputed genotypes, thus not for all of these EduYear-SNPs summary statistics for various traits 

were reported. Therefore, for SNPs not available in the reported summary statistics we identified 

SNP proxies with an LD r2 > 0.5 in the reference European genomes (both 1000G pilot 1 and Phase 

I v3). Extended Data Table 3 is showing the full SNP availability in each reported trait and their 

proxies used in the analyses.  
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Extended Data Figure and Legends 

Genetically modulated educational attainment and coronary disease risk  

 

 

Extended Data Figure 1. Study design. (A). We studied the genetic component underlying the relationship 

between higher educational attainment and lower CAD risk (blue block) in multiple cohort data (GerMIFS 

I-VI, WTCCC, Cardiogenics, MIGen at discovery stage and UK Biobank (UKBB) at replication stage) and 

associated the ‘genetic education score’ with the susceptibility of CAD and other traits, which allowed to 

estimate the respective effect sizes. As the ‘genetic education score’ certainly affects the (exogenous) 

phenotype ‘years of school education’ (real EduYears) further adjustment for this phenotype (which is only 

available in the UKBB cohort) was needed to examine effects of the ‘genetic education score’ that are not 

directly mediated by school education. (B). With the aim to further characterize the interplay between the 

genetic basis of educational attainment, the prevalence of CAD and its related lifestyle risk factors (green 

Extended Data Figures



block), we performed similar regression analysis with additional inclusion of possible intermediate lifestyle 

and risk factors, to check the (inter)dependence of the ‘genetic education score’, lifestyle risk factors and 

CAD risk. Furthermore, we employed genetic Mendelian randomization approach to investigate the 

causality of educational attainment on CAD and/or its related risk factors.  

 

 

 

 

Extended Data Figure 2. Distribution of genetic risk score of EduYear in participants from nine 

case-controls studies for coronary artery disease. 
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Gaussian distribution showing the number of EduYear-increasing alleles in a group of 13,080 cases with 

coronary disease and 14,471 controls from nine large case-control studies. Individuals were divided in 

quintiles (dashed lines) in each study based on their ‘genetic education score’. The number above each 

quintile represents the average number of EduYear-increasing alleles in each quintile.  

 

Extended Data Figure 3.  Forest plot for meta-analysis including all studies. In addition to the nine 

studies from which we have initially identified the inverse association between the 'genetic education 

score' and risk of CAD, a consistent inverse correlation with similar logistic regression was also found in 

UK Biobank for replication. Afterwards a meta-analysis was performed to combine the effects across all 

ten studies including UK Biobank. (A) The same effect is replicated and obtained with an even more 

significant fixed-effect meta-analysis p-value (p=7.34x10-13  compared to p=1.52 x10-8 in the discovery 

studies ). (B) We also categorized all studies according to countries, and observed directionally identical 

effects (p=1.05x10-6 for the UK; p=5.30·x10-5 for Germany; p=2.40x10-5 for the mixture of several 

Western countries). 
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Extended Data Figure 4. Interpretation of findings.  

A. It has been known that educational attainment is partially modulated by common genetic variants and 

inversely associated with cardiovascular diseases (black lines). In the present study, we have firstly found 

that the common genetic variants that influence length of school education are associated with the 

manifestation of CAD (straight blue line in the middle). Further analyses indicated the common genetic 

variants that influence length of school education are in parallel associated with specific lifestyle and risk 

factors (blue line in the lower part) (e.g. BMI, smoking status, and triglycerides). Importantly, these 

associations (blue lines) are partly independent on the actual length of education (black lines). Finally, 

several lifestyle related factors were deduced as intermediate factors that mediate the genetic component 

increasing in CAD risk (green elements and lines). In summary, genetic factors may also influence 

decision making for a health-conscious lifestyle later in life and affect thereby the prevalence of CAD 

through its risk factors.  

B. We are well aware of that despite of our observation that the signal between the ‘genetic education 

score’ and CAD risk decreases when smoking and BMI are included as co-variables, we can only 

demonstrate plausible deductions (the green elements and lines in Panel A) instead of causality, due to the 

fact that the ‘genetic education score’ may have broader implications. It is likely that a number of 

confounders such as intelligence, behaviour patterns, socioeconomic factors in respective individuals as 
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well as the parental generation are involved in the interplay of educational attainment, CAD factors and 

prevalence of CAD. Here in Panel B we illustrate these potential and plausible links. 

Extended Data Figure 5. Genetic causality of educational attainment and coronary artery disease as 

well as its risk factors 

Mendelian randomization (MR) analysis was performed to investigate the genetic causality of educational 

attainment and coronary artery disease (CAD) as well as its risk factors. Several MR methods were 

employed to combine individual-SNP beta estimates retrieved from various genome-wide meta-analyses 

(details described in Methods and Supplementary Text). For sensitivity analyses we excluded from the 74 

EduYear-SNPs which had marginal associations (p<0.01 in the published summary statistics) with CAD or 

an examined risk factor (Extended Data Table 3). A 1-SD increase in education years and 28% lower risk 

of CAD (odds ratio for weighted median method of 0.72, 95% CI 0.57, 0.90, p=4.3x10-3) was observed even 

after all confounder-influential SNPs have been excluded.  
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Extended Data Figure 6. Association between the ‘genetic education score’ and extended phenotypes 

in UK Biobank. 

Regression models of the ‘genetic education score’ on extended phenotypes with adjustment for real years 

of school education completed (EduYears), BMI or smoking. In addition to the covariates shown here, all 



models were also adjusted for the first 5 principal components based on autosomal genotypes plus 

genotype array platform.  
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Abstract 
 

Aims: Genetic disposition and lifestyle factors are understood as independent components underlying the 

risk of multiple diseases. In this study, we aim to investigate the interplay between genetics, educational 

attainment - an important denominator of lifestyle - and coronary artery disease (CAD) risk.  

Methods and Results: Based on the effect sizes of 74 genetic variants associated with educational 

attainment, we calculated a ‘genetic education score’ in 13,080 cases and 14,471 controls and observed an 

inverse correlation between the score and risk of CAD (p=1.52x10-8; odds ratio [OR] 0.79 (95% 

confidence interval [CI] 0.73-0.85) for the higher compared to the lowest score quintile). We replicated in 

146,514 individuals from UK Biobank (p=1.85x10-6) and also found strong associations between the 

‘genetic education score’ with ‘modifiable’ risk factors including smoking (p=5.36x10-23), body mass 

index (p=1.66x10-30), and hypertension (p=3.86x10-8). Interestingly, these associations were only modestly 

attenuated by adjustment for years spent in school. By contrast, a model adjusting for BMI and smoking 

abolished the association signal between the ‘genetic education score’ and CAD risk suggesting an 

intermediary role of these two risk factors. Mendelian randomization analyses performed with summary 

statistics from large genome-wide meta-analyses and sensitivity analysis using 1271 variants affecting 

educational attainment (OR 0.68 for the higher compared to the lowest score quintile; 95% CI 0.63-0.74; 

p=3.99x10-21) further strengthened these findings. 

Conclusion: Genetic variants known to affect educational attainment may have implications for a health-

conscious lifestyle later in life and subsequently affect the risk of coronary artery disease.   

Keywords: atherosclerosis / school education / coronary artery disease / genome-wide association studies 

/ genetics 
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