647 research outputs found

    The effects of twisted magnetic field on coronal loops oscillations and dissipation

    Full text link
    The standing MHD modes in a zero-β\beta cylindrical magnetic flux tube modelled as a straight core surrounded by a magnetically twisted annulus, both embedded in a straight ambient external field is considered. The dispersion relation for the fast MHD waves is derived and solved numerically to obtain the frequencies of both the kink (m=1m=1), and fluting (m=2,3m=2,3) waves. Damping rates due to both viscous and resistive dissipations in presence of the twisted magnetic field is derived and solved numerically for both the kink and fluting waves.Comment: 13 pages, 11 figure

    Noise and Order in Cavity Quantum Electrodynamics

    Get PDF
    In this paper we investigate the various aspects of noise and order in the micromaser system. In particular, we study the effect of adding fluctuations to the atom cavity transit time or to the atom-photon frequency detuning. By including such noise-producing mechanisms we study the probability and the joint probability for excited atoms to leave the cavity. The influence of such fluctuations on the phase structure of the micromaser as well as on the long-time atom correlation length is also discussed. We also derive the asymptotic form of micromaser observables.Comment: 31 pages and 8 figure

    The effect of twisted magnetic field on the resonant absorption of MHD waves in coronal loops

    Full text link
    The standing quasi modes in a cylindrical incompressible flux tube with magnetic twist that undergoes a radial density structuring is considered in ideal magnetohydrodynamics (MHD). The radial structuring is assumed to be a linearly varying density profile. Using the relevant connection formulae, the dispersion relation for the MHD waves is derived and solved numerically to obtain both the frequencies and damping rates of the fundamental and first-overtone modes of both the kink (m=1) and fluting (m=2,3) waves. It was found that a magnetic twist will increase the frequencies, damping rates and the ratio of the oscillation frequency to the damping rate of these modes. The period ratio P_1/P_2 of the fundamental and its first-overtone surface waves for kink (m=1) and fluting (m=2,3) modes is lower than 2 (the value for an untwisted loop) in the presence of twisted magnetic field. For the kink modes, particularly, the magnetic twists B_{\phi}/B_z=0.0065 and 0.0255 can achieve deviations from 2 of the same order of magnitude as in the observations. Furthermore, for the fundamental kink body waves, the frequency bandwidth increases with increasing the magnetic twist.Comment: 18 pages, 9 figure

    An analytic interface dynamo over a shear layer of finite depth

    Get PDF
    Parker's analytic Cartesian interface dynamo is generalized to the case of a shear layer of finite thickness and low resistivity ("tachocline"), bounded by a perfect conductor ("radiative zone") on the one side, and by a highly diffusive medium ("convective zone") supporting an α\alpha-effect on the other side. In the limit of high diffusivity contrast between the shear layer and the diffusive medium, thought to be relevant for the Sun, a pair of exact dispersion relations for the growth rate and frequency of dynamo modes is analytically derived. Graphic solution of the dispersion relations displays a somewhat unexpected, non-monotonic behaviour, the mathematical origin of which is elucidated. The dependence of the results on the parameter values (dynamo number and shear layer thickness) is investigated. The implications of this result for the solar dynamo problem are discussed.Comment: 11 pages, 4 figures Geophys. Astrophys. Fluid Dyn., in pres

    The Atlanto-Pacific multidecade oscillation and its imprint on the global temperature record

    Get PDF
    Results from a multiregression analysis of the global and sea surface temperature anomalies for the period 1950–2011 are presented where among the independent variables multidecade oscillation signals over various oceanic areas are included. These indices are defined in analogy with the Atlantic Multidecadal Oscillation (AMO) index. Unexpectedly we find that a strong multidecade oscillation signal echoing the AMO is also present in the Western and Northwestern Pacific region. The results indicate that naturally induced climate variations seem to be dominated by two internal variability modes of the ocean–atmosphere system: AMO and El Niño Southern Oscillation, with a marked geographical dichotomy in their respective areas of dominance. As the AMO index is directly derived from SST data the finding that the AMO signal is present on a large fraction of the global oceanic surface casts doubt on its use as an independent explanatory variable in regression analyses of the global surface temperature anomalies

    Observational Evidence of Sausage-Pinch Instability in Solar Corona by SDO/AIA

    Get PDF
    We present the first observational evidence of the evolution of sausage-pinch instability in Active Region 11295 during a prominence eruption using data recorded on 12 September 2011 by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We have identified a magnetic flux tube visible in AIA 304 \AA\ that shows curvatures on its surface with variable cross-sections as well as enhanced brightness. These curvatures evolved and thereafter smoothed out within a time-scale of a minute. The curved locations on the flux tube exhibit a radial outward enhancement of the surface of about 1-2 Mm (factor of 2 larger than the original thickness of the flux tube) from the equilibrium position. AIA 193 \AA\ snapshots also show the formation of bright knots and narrow regions inbetween at the four locations as that of 304 \AA\ along the flux tube where plasma emission is larger compared to the background. The formation of bright knots over an entire flux tube as well as the narrow regions in < 60 s may be the morphological signature of the sausage instability. We also find the flows of the confined plasma in these bright knots along the field lines, which indicates the dynamicity of the flux tube that probably causes the dominance of the longitudinal field component over short temporal scales. The observed longitudinal motion of the plasma frozen in the magnetic field lines further vanishes the formed curvatures and plasma confinements as well as growth of instability to stablize the flux tube.Comment: 12 pages, 5 figure

    Thermal Equilibrium with the Wiener Potential: Testing the Replica Variational Approximation

    Full text link
    We consider the statistical mechanics of a classical particle in a one-dimensional box subjected to a random potential which constitutes a Wiener process on the coordinate axis. The distribution of the free energy and all correlation functions of the Gibbs states may be calculated exactly as a function of the box length and temperature. This allows for a detailed test of results obtained by the replica variational approximation scheme. We show that this scheme provides a reasonable estimate of the averaged free energy. Furthermore our results shed more light on the validity of the concept of approximate ultrametricity which is a central assumption of the replica variational method.Comment: 6 pages, 1 file LaTeX2e generating 2 eps-files for 2 figures automaticall

    Quark Number Fluctuations in a Chiral Model at Finite Baryon Chemical Potential

    Full text link
    We discuss the net quark and isovector fluctuations as well as off-diagonal quark flavor susceptibilities along the chiral phase transition line in the Nambu--Jona-Lasinio (NJL) model. The model is formulated at non-zero quark and isospin chemical potentials with non-vanishing vector couplings in the iso-scalar and iso-vector channels. We study the influence of the quark chemical potential on the quark flavour susceptibilities in detail and the dependence of the results on model parameters as well as on the quark mass. The NJL model findings are compared with recent lattice results obtained in two--flavor QCD at finite chemical potential. On a qualitative level, the NJL model provides a consistent description of the dependence of quark number fluctuations on temperature and baryon chemical potential. The phase diagram and the position of the tricritical point in the NJL model are also discussed for different parameter sets.Comment: 33 pages, 11 figures; final version accepted for publication in Phys. Rev.

    Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions

    Full text link
    We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multiplied by a scaling function of time. We show that the probability density of the scaled walker position converges in the long-time limit to a non-degenerate one only if the scaling function behaves in a certain way. This function as well as the limiting probability density are determined in explicit form. Also, we express the limiting probability density which has heavy tails in terms of the Fox HH-function and find its behavior for small and large distances.Comment: 16 pages, 1 figur
    corecore