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Parker’s analytic Cartesian interface dynamo is generalized to the case of a shear layer of finite thickness and low resistivity (“tachocline”),
bounded by a perfect conductor (“radiative zone”) on the one side, and by a highly diffusive medium (“convective zone”) supporting
an α-effect on the other side. In the limit of high diffusivity contrast between the shear layer and the diffusive medium, thought to be
relevant for the Sun, a pair of exact dispersion relations for the growth rate and frequency of dynamo modes is analytically derived.
Graphic solution of the dispersion relations displays a somewhat unexpected, non-monotonic behaviour, the mathematical origin of which
is elucidated. The dependence of the results on the parameter values (dynamo number and shear layer thickness) is investigated. The
implications of this result for the solar dynamo problem are discussed.
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1 Introduction

Interface dynamos are a widely discussed class of astrophysical dynamos, especially in the solar context
(Petrovay 2000, Solanki et al. 2006, Charbonneau 2005). In contrast to the textbook case of Parker’s
migratory dynamo, in an interface dynamo the α and Ω effects operate in spatially distinct but adjacent
layers. In this setup the dynamo wave will arise as a surface wave propagating along the interface of the
two regions. While dynamo problems with spatially separated α and Ω had been considered since the
1970’s (see e.g. the references in Zeldovich et al. 1984), the classic analytic formulation of the problem is
due to Parker (1993).

It has long been suspected (Parker 1975, Schüssler 1984, Petrovay 1991), and recently demonstrated in
numerical simulations (Browning et al. 2006) that the toroidal magnetic flux generated in the solar dynamo
can only be stored below the base of the convective zone proper, as various flux transport effects (buoyancy
and pumping) remove it quite effectively from the convective zone. With the discovery of the tachocline
layer it became clear that this hypothetical flux reservoir coincides with the strongest rotational shear in
the solar interior, which is plausibly also responsible for the production of the strong toroidal magnetic
fields, i.e. that this is the site of the Ω-effect. The site and nature of the α-effect is much less clear; in
interface dynamo models it is assumed to be concentrated in the deep convective zone, just above the
tachocline.

Current helioseismic evidence indicates that at low heliographic latitudes the tachocline is situated
immediately below the adiabatically stratified convective zone. (At higher latitudes some overlap may be
present.) This suggests that the tachocline is much less turbulent than the convective zone proper. This is
also consistent with another physical consideration: the high overall toroidal field strength that must be
present if all the magnetic flux emerging during a solar cycle resides in the thin tachocline layer should
strongly suppress turbulence there. The strong subadiabatic stratification of the tachocline will then inhibit
the penetration of meridional circulation to it, presenting a difficulty for flux transport models, the main
contender of interface dynamo models.
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There is some disagreement over whether the oscillatory magnetic field generated by the dynamo pervades
the whole of the tachocline or not. For effective magnetic diffusivities less than 108 cm2/s or so, the pene-
tration depth (skin depth) of the oscillatory magnetic field is much less than the helioseismically inferred
tachocline thickness (order of 10 Mm), so the penetration cannot be complete. In this “slow tachocline”
scenario (Garaud 2001, Brun and Zahn 2006) the dynamical changes in the bulk of the tachocline take place
on the long diffusive timescale. In the alternative “fast tachocline” scenario (Forgács-Dajka and Petrovay
2001, 2002, Forgács-Dajka 2003), hydrodynamical instabilities maintain some modest level of turbulence
in the tachocline, so the resulting higher skin depth allows the dynamo field to penetrate deeper. In this
case it is the Lorentz force in the dynamo generated field that limits the penetration of differential rota-
tion deeper into the radiative interior, so tachocline thickness and skin depth are intimately related and
should agree within an order of unity factor (Petrovay 2003). In the present paper we will consider the
fast tachocline case; some observational support for this scenario comes from the recent detection of solar
cycle related changes in tachocline properties (Baldner and Basu 2008), as predicted by the fast tachocline
models.

The interface dynamo option for the solar dynamo is attractive, as it would explain the high (∼ 100 kG)
field strength of toroidal fields and their equatorward propagation, while still being consistent with phys-
ical assumptions about the magnetic diffusivity values in both the convective zone and tachocline and
about the meridional flow amplitude. Interface dynamo models for the Sun have been constructed, e.g.,
by Charbonneau and MacGregor (1997), Tobias (1996) or Markiel and Thomas (1999). Unfortunately,
none of these models show a compelling detailed agreement with observed features of the cycle. Their
main alternative, the flux transport dynamos (Dikpati and Charbonneau 1999, Chatterjee et al. 2004), in
contrast, are more straightforward to parameterize so that they can reproduce some salient features of the
solar cycle reasonably well; however, the physical consistency of the models is very much in doubt, espe-
cially regarding their assumptions on diffusive and advective magnetic flux transport processes (Choudhuri
2008).

The now classic analytic Parker (1993) interface dynamo consisted of two adjacent semiinfinite domains:
one highly diffusive domain home to the α-effect and another, low diffusivity domain characterized by
strong shear. As we have seen, the solar tachocline, corresponding to the shear layer in the Cartesian
interface dynamo, has a quite limited thickness, so it is not particularly well represented by a semiinfinite
domain. The aim of the present paper is to generalize Parker’s analytical interface dynamo to the case
when the shear layer has a finite thickness.

What makes this problem particularly relevant is the recent proposal (Petrovay 2007) that combining
an interface model with a fast tachocline scenario both the magnetic field amplitude and the thickness of
the tachocline can be determined (in the simplest case, by solving two algebraic equations). Under some
plausible assumptions, two solutions are found: one with strong field and thin tachocline and another
one with weaker field and a thicker tachocline. These represent “high” and “low” states of solar activity,
suggesting a link with the phenomenon of grand minima. Based on an analogy with surface gravity waves,
this model assumed that a finite shear layer thickness h reduces the growth rate of the interface dynamo
by a factor tanh(hk), where k is the wave number. One objective of the present work is to examine the
validity of this assumption.

We note that interface dynamos with finite shear layers have previously been considered in many nu-
merical implementations (e.g. Charbonneau and MacGregor 1997, Markiel and Thomas 1999) as well as
in a semianalytic Cartesian setup more general than our current model (Zhang et al. 2004). The effect
of varying h, however, was not studied in any of those models, due to the large number of other free
parameters and to the different focus of those papers. It is therefore legitimate to consider a setup where
h is a variable parameter while in other respects the model is kept as simple as possible.

The structure of our paper is as follows. In section 2 we analytically derive the dispersion relations in the
limit relevant to the Sun. Section 3 presents graphical solutions of these dispersion relations and discusses
their properties. Finally section 4 concludes the paper.
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2 Derivation of the Dispersion Relations

2.1 Generic complex dispersion relations

We use a Cartesian setup where the coordinate z corresponds to height above the bottom of the convective
zone in the solar application, while x and y correspond to heliographic latitude and longitude, respectively.
Let η denote the magnetic diffusivity, α the α parameter of dynamo theory (see e.g. Petrovay 2000) and
Ω = dvy/dz the shear rate of the velocity field representing radial differential rotation. The magnetic field
is decomposed into a “toroidal” component By and a “poloidal” component ∇ × Ayey where Ay is the
toroidal vector potential.

Consider now the following 3-layer “sandwich” setup:

Convective zone z > 0 η = η+ α 6= 0 Ω = 0 By = B(x, z, t) Ay = A(x, z, t)

Tachocline −h < z < 0 η = η− α = 0 Ω 6= 0 By = b(x, z, t) Ay = a(x, z, t)

Radiative interior z < −h η = 0 α = 0 Ω = 0 By = 0 Ay = 0

The parameters η+, η−, α and Ω are assumed to be constant in their respective layers.
The αΩ dynamo equations in z > 0 then read

∂B

∂t
− η+

(
∂2B

∂x2
+
∂2B

∂z2

)
= 0, (1a)

∂A

∂t
− η+

(
∂2A

∂x2
+
∂2A

∂z2

)
= αB, (1b)

while in the tachocline we have

∂b

∂t
− η−

(
∂2b

∂x2
+
∂2b

∂z2

)
= Ω

∂a

∂x
, (2a)

∂a

∂t
− η−

(
∂2a

∂x2
+
∂2a

∂z2

)
= 0. (2b)

The matching conditions at z = 0 are

b = B, a = A,
∂a

∂z
=
∂A

∂z
, η−

∂b

∂z
= η+

∂B

∂z
, (3a,b,c,d)

while at z = −h they simply read

b = 0, a = 0. (4a,b)

Following the standard procedure for the analytical solution of interface dynamo equations (Parker 1993,
Petrovay and Kerekes 2004), for the solutions in terms of our variables f(x, z, t) we consider normal modes
of the form f(z) exp[(σ + iω)t+ ikx]. In z > 0, the z-dependent part f(z) is sought in the form

B = Ce−Rz A = (D + Ez)e−Rz, (5a,b)

where R = S + iQ, and C, σ, ω, k, S and Q are all real, while D and E are complex. As we expect the
field to vanish as z →∞, S must be positive.

In the shear layer the solutions have a similar form, but, owing to the finite thickness of the layer, the
solution is in general a superposition of modes growing and decaying with z:

a = (Jerz + J1e−rz), b = (L+Mz)erz + (L1 +M1z)e
−rz, (6a,b)
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where r = s+ iq with s and q real and s > 0, as before. Equations (4a,b) then imply

J1 = −Je−2rh, L1 = hM1 + (hM − L)e−2hr, (7a,b)

respectively.
Substitution of our trial solutions (5a,b), (6a,b) into the four interface fitting conditions (3a-d) yields

J(1− e−2hr) = D, (8a)

L(1− e−2hr) + h(Me−2hr +M1) = C, (8b)

rJ(1 + e−2hr) = E −DR, (8c)

η−

[
rL(1 + e−2hr) +M +M1 − rh(Me−2hr +M1)

]
= −η+RC. (8d)

On the other hand, substituting (7a,b) into the trial solutions (5a,b) and (6a,b), and substituting these
into the dynamo equations (1a,b), (2a,b) we obtain the dispersion relations

η+R
2 = σ + iω + η+k

2, (9a)

η−r
2 = σ + iω + η−k

2, (9b)

E = αC/2η+R, (9c)

−2η−r(Merz −M1e−rz) = ikΩJ(erz − e−rze−2hr) (9d)

the last of which implies the two separate relations

M = −ikΩJ/2η−r, M1 = Me−2hr. (10a,b)

Using the relations (8a-c), as well as (9c,d), equation (8d) can be written as

rR(µ2r +Rδ)(r +Rδ)/k4 = 1
4 iN [δ − (1− δ2)hr], (11)

where we introduced the dynamo number N = αΩ/η2
+k

3 and the notation δ = tanh(hr). Equation (11)
establishes a relation between the complex vertical wavenumbers r and R. A second such relation is derived
by eliminating (σ + iω) from equations (9a,b):

R2 = µ2r2 − (µ2 − 1)k2, (12)

where the diffusivity contrast µ2 = η−/η+ was introduced.
Given the parameters N , µ and δ (or, equivalently, h) defining the problem, the pair of complex dispersion

relations (11), (12) can in principle be solved for r and R. The frequency ω and growth rate σ of the dynamo
wave then follow from (9a,b). The nine parameters C, D, E, J , J1, L, L1, M and M1 are then determined
by the relations (7)–(8c) and (9c,d). Substituting these into (5a,b), (6a,b) together with the derived values
of r and R finally should yield the full z-dependence of the solution for a given value of k.

2.2 Solar limit

Unfortunately, an attempt to actually implement this procedure analytically encounters difficulties. Equa-
tions (11), (12) look deceivingly simple, yet the actual calculation soon becomes quite involved. To make
progress, from this point onwards we restrict attention to the limit relevant for the solar interior.

In the solar convective zone the dynamo wave number and frequency are empirically known to be of
order k ∼ 1/R� and ω ∼ η+/R

2
� ∼ η+k

2, where R� is the solar radius. In the tachocline below, the
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magnetic diffusivity is uncertain but surely several orders magnitude lower than the fixed value η+: we
may then safely take the limit η− → 0. With the fixed values of η+, k and ω given above, the penetration
depth (skin depth) of the oscillatory dynamo magnetic field will be (2η−/ω)1/2 ∼ µ/k, which also implies
|r| ∼ k/µ. As the thickness h of a fast tachocline is expected to be a few skin depths, so in this limit we
also expect h ∼ µ/k → 0, suggesting the use of a fixed nondimensional layer depth H = hk/µ instead.
Finally, inspection of equation (11) shows that the leading terms on the left-hand side will be of order
1/µ2, while those on the right-hand side are of order N . So in order to keep the dynamo supercritical in
the solar limit we need to keep µ2N fixed.

Summing up these considerations, the limit relevant to the solar case is

µ→ 0, while H = hk/µ = finite and N = µ2N = finite. (13)

Equation (12) then simplifies to

R = (µ2r2 + k2)1/2 . (14)

Substituting this into (11) yields an equation for the complex wavenumber r only. In analogy with the
nondimensional layer depth H, we now introduce the nondimensional equivalent of r as Ψ = µr/k: clearly,
Ψ will remain finite in the solar limit, as discussed above. Expressing r with Ψ and keeping only leading
order terms in the limit of µ→ 0, equation (11) finally takes the form

[
Ψ2(δ2 − 1)2H2 + 2Ψδ(δ2 − 1)H + δ2

]
N 2/16 + iΨ2(Ψ2 − 1)δ

[
Ψ(δ2 − 1)H + δ

]
N/2 = δ2Ψ4(1 + Ψ2)2.

(15)
In this equation, Ψ and δ are complex, while the parameters N and H are real. We write δ and Ψ explicitly
as

δ = δR + iδI , Ψ2 = σ̃ + iν, (16a,b)

where

σ̃ = σ/η+k
2, ν = ω/η+k

2 (17a,b)

are the dimensionless growth rate and frequency of the dynamo wave, and (16b) follows from (9b) in the
limit µ→ 0.

Upon performing these substitutions, equation (15) is split into real and imaginary parts. (The calcula-
tion is very tedious but still manageable by numerical algebra packages.) This finally yields two dispersion
relations for the nondimensional growth rate σ̃ = β − 1 and the nondimensional frequency ν. These are of
the form

f1(σ̃, ν;H,N ) = 0, f2(σ̃, ν;H,N ) = 0, (18a,b)

where

f1(σ̃, ν;H,N ) ≡ (a11H
2− a12)N 2 + b1N + c1, f2(σ̃, ν;H,N ) ≡ (a21H

2− a22)N 2 + b2N + c2 (19a,b)
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with

a11 = ν(1 + δ4
R + δ4

I )− 4σ̃δRδI(1− δ2
R + δ2

I )− 2ν(δ2
R + 3δ2

Rδ
2
I − δ2

I ), (20a)

a12 = 2δIδR, (20b)

b1 = 8[2ν(1 + 2σ̃)δRδI − (σ̃2 + σ̃ − ν2)(δ2
R − δ2

I )], (20c)

c1 = 32[(σ̃2 + σ̃ − ν2)δR − ν(2σ̃ + 1)δI ][(σ̃
2 + σ̃ − ν2)δI + ν(2σ̃ + 1)δR], (20d)

a21 = σ̃(1 + δ4
R + δ4

I )− 4νδRδI(1− δ2
R + δ2

I )− 2σ̃(δ2
R + 3δ2

Rδ
2
I − δ2

I ), (20e)

a22 = δ2
R − δ2

I , (20f)

b2 = 8[ν(1 + 2σ̃)(δ2
R − δ2

I ) + 2(σ̃2 + σ̃ − ν2)δRδI ], (20g)

c2 = 16[σ̃(σ̃ + 1)(δR − δI)− ν(ν + 1)δR + ν(ν − 1)δI ]

×[σ̃(σ̃ + 1)(δR + δI)− ν(ν − 1)δR + ν(ν + 1)δI ]. (20h)

Recalling that δ = tanh(hr) = tanh(HΨ), the real and imaginary parts of δ are

δR =
cosh(Hs̃) sinh(Hs̃)

cosh2(Hs̃)− sin2(Hq̃)
, δI =

cos(Hq̃) sin(Hq̃)

cosh2(Hs̃)− sin2(Hq̃)
, (21a,b)

where s̃ = µs/k and q̃ = µq/k are related to σ̃ and ν by virtue of equations (9a,b):

s̃2 = 1
2 [σ̃ + (σ̃2 + ν2)1/2], q̃2 =

ν2

σ̃ + [σ̃2 + ν2]1/2
. (22a,b)

It is straightforward to check that, in the limit H →∞ (i.e. δ → 1), Parker’s original solution is retrieved
(cf. equations (60), (61) in Parker 1993).

3 Solution

While the equations (18a,b) are quadratic in N , they are in general extremely complicated functions of
the other variables. Nevertheless, equations (18a,b) lend themselves most readily to a graphic solution.
Fixing the value of the control parameters N and H, solutions correspond to the crossing points of the
zero contours of functions f1 and f2 in the νσ̃ plane. Then, varying H while keeping either N or the total
shear fixed one can study how the solutions deviate from the Parker solution (H → ∞ limit) for finite
values of H.

For the purposes of this study we take the “textbook” case N = 12
√

2, already considered by Parker
(1993). In the limit H →∞, considered by Parker, there is only one growing mode characterized by σ̃ = 1
and ν =

√
2, as borne out in figure 1a. As H is decreased, the solution bifurcates, and two sequences of

apparently growing modes appear. Recall, however, that during the derivation of the dispersion relations
in section 2, several steps may have resulted in the appearance of spurious solutions. Indeed, on physical
grounds we expect to return Parker’s solution in the H → ∞ limit but also to behave as σ̃ → 0 at some
finite positive value of H. On the basis of this consideration we must reject the “upper” (i.e. higher growth
rate) sequence of solutions in figure 1, converging to σ̃ = 1.67, ν = 2.01, as spurious. The lower sequence,
representing physical growing modes, in turn disappears for H < 1.45, i.e. the dynamo is suppressed for
such low layer depths.

The variation of σ̃ with H is shown in figure 2. The variation can be roughly represented by a shifted
tangent hyperbolic function. This was to be expected in analogy with surface gravity waves (Petrovay 2007),
the shift here being due to the suppression of growing modes at a final layer depth. The detailed behaviour of
the solution is, however, considerably richer that this simple theoretical expectation, displaying a surprising
non-monotonic modulation. This is a real physical interference effect, due to the interaction of the waves
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Figure 1. Zero contours of the functions f1 (solid) and f2 (dashed) on the νσ̃ plane, for different values of the layer depth H. Crossing
points of the solid and dashed curves represent formal solutions of the dispersion relations. The solution in the limit H →∞ is marked
by P .
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Figure 2. Variation of the nondimensional growth rate σ̃ with layer depth H for N = 12
√

2. The solution is analytically fitted by a
simple shifted tangent hyperbolic (dashed), on which a Gaussian damped sinusoidal is superposed (dotted).

Figure 3. Variation of the nondimensional frequency ν with layer depth H for N = 12
√

2. The relation ν2 ∝ tanh(H) (dashed), based
on an analogy with surface gravity waves, is shown for comparison.

originating at the interface and the waves reflected from the bottom of the tachocline. To imitate this
modulation, we superpose an exponentially damped sinusoidal on the tangent hyperbolic to arrive at the
following fitting function

σ̃ = tanh(H ′) + 0.2 sin(1.5H ′) exp(−0.25H ′2), where H ′ = H − 1.45. (23a,b)

Note, however, that the appearence and details of such interference effects may be sensitive to the details
of the model setup (i.e. to how sharp the bottom of the tachocline is supposed to be).

The breakdown of the water wave analogy is even more apparent from figure 3. The variation of the
frequency with layer depth is clearly quite different for interface dynamo waves than the simple ν2 ∝
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Figure 4. Trajectory of the physical solution sequence in the νσ̃ plane for varying H when N = 12
√

2 is kept fixed

tanh(H) relation (dashed), valid for surface gravity waves.
Figure 4 presents the trajectory of the solution in the νβ plane. It is apparent that in the critical case

ν ' 1.8, at least an order of magnitude higher than the value (2/N)1/2 suggested by Parker’s original
analysis.

4 Conclusion

In this paper we have generalized the textbook interface dynamo model of Parker (1993) to the case of
finite tachocline thickness, while otherwise keeping the model as simple as possible. We found that the
growth rate of the dynamo has a shifted tangent hyperbolic dependence on the layer depth, in agreement
with the expectation based on an analogy with surface gravity waves. This finding lends some support to
the claim (Petrovay 2007) that the combination of a fast tachocline and an interface dynamo can give rise
to bimodal solutions, possibly explaining the phenomenon of grand minima. Under the assumption that
the growth rate of the dynamo has a dependence on the tachocline depth similar to what was found in the
present paper, in that previous work two solutions were found for a nonlinear interface dynamo combined
with a fast tachocline: a strong field, thin tachocline solution corresponding to normal solar activity and a
weak field, thick tachocline solution that may potentially represent a grand minimum state of solar acivity.

Yet the behaviour of the solutions does show some surprising features. The nondimensional frequency
varies with layer depth in a non-intuitive way and the detailed behaviour of the growth rate—layer depth
curve displayes a non-monotonic, oscillatory behaviour. This illustrates the richness of phenomena appear-
ing even in strongly simplified interface dynamo models. A further systematic study of models of this type
and of more generic models is needed to more fully explore the parameter space and to obtain a deeper
understanding of the spectrum of possible dynamo solutions in an interface setup. Without such system-
atic studies no final verdict on the viability of an interface-type solution to the solar dynamo problem is
possible.
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