We consider the statistical mechanics of a classical particle in a
one-dimensional box subjected to a random potential which constitutes a Wiener
process on the coordinate axis. The distribution of the free energy and all
correlation functions of the Gibbs states may be calculated exactly as a
function of the box length and temperature. This allows for a detailed test of
results obtained by the replica variational approximation scheme. We show that
this scheme provides a reasonable estimate of the averaged free energy.
Furthermore our results shed more light on the validity of the concept of
approximate ultrametricity which is a central assumption of the replica
variational method.Comment: 6 pages, 1 file LaTeX2e generating 2 eps-files for 2 figures
automaticall