1,019 research outputs found

    Ground state of a large number of particles on a frozen topography

    Full text link
    Problems consisting in finding the ground state of particles interacting with a given potential constrained to move on a particular geometry are surprisingly difficult. Explicit solutions have been found for small numbers of particles by the use of numerical methods in some particular cases such as particles on a sphere and to a much lesser extent on a torus. In this paper we propose a general solution to the problem in the opposite limit of a very large number of particles M by expressing the energy as an expansion in M whose coefficients can be minimized by a geometrical ansatz. The solution is remarkably universal with respect to the geometry and the interaction potential. Explicit solutions for the sphere and the torus are provided. The paper concludes with several predictions that could be verified by further theoretical or numerical work.Comment: 9 pages, 9 figures, LaTeX fil

    Enquête sérologique sur la fréquence en France des infections leptospirosiques canines

    Get PDF
    Kolochine-Erber B., Goret Pierre, Bouchet André. Enquête sérologique sur la fréquence en France des infections leptospirosiques canines. In: Bulletin de l'Académie Vétérinaire de France tome 110 n°8, 1957. pp. 423-426

    Crystalline Order on a Sphere and the Generalized Thomson Problem

    Get PDF
    We attack generalized Thomson problems with a continuum formalism which exploits a universal long range interaction between defects depending on the Young modulus of the underlying lattice. Our predictions for the ground state energy agree with simulations of long range power law interactions of the form 1/r^{gamma} (0 < gamma < 2) to four significant digits. The regime of grain boundaries is studied in the context of tilted crystalline order and the generality of our approach is illustrated with new results for square tilings on the sphere.Comment: 4 pages, 5 eps figures Fig. 2 revised, improved Fig. 3, reference typo fixe

    History and phylogeny of intermediate filaments: Now in insects

    Get PDF
    Intermediate filaments include the nuclear lamins, which are universal in metazoans, and the cytoplasmic intermediate filaments, which are much more varied and form cell type-specific networks in animal cells. Until now, it has been thought that insects harbor lamins only. This view is fundamentally challenged by the discovery, reported in BMC Biology, of an intermediate filament-like cytoplasmic protein, isomin, in the hexapod Isotomurus maculatus. Here we briefly review the history of research on intermediate filaments, and discuss the implications of this latest finding in the context of what is known of their structure and functions

    Limits on models of the ultrahigh energy cosmic rays based on topological defects

    Get PDF
    An erratum exists for this article. Please see the description link below for details.Using the propagation of ultrahigh energy nucleons, photons, and electrons in the universal radiation backgrounds, we obtain limits on the luminosity of topological defect scenarios for the origin of the highest energy cosmic rays. The limits are set as a function of the mass of the X particles emitted by the cosmic strings or other defects, the cosmological evolution of the topological defects, and the strength of the extragalactic magnetic fields. The existing data on the cosmic ray spectrum and on the isotropic 100 MeV gamma-ray background limit significantly the parameter space in which topological defects can generate the flux of the highest energy cosmic rays, and rule out models with the standard X-particle mass of 10¹⁶GeV and higher.R. J. Protheroe and Todor Stane

    Asymptotic conditions of motion for radiating charged particles

    Get PDF
    Approximate asymptotic conditions on the motion of compact, electrically charged particles are derived within the framework of general relativity using the Einstein- Infeld-Hoffmann (EIH) surface integral method. While superficially similar to the Abraham-Lorentz and Lorentz-Dirac (ALD) equations of motion, these conditions differ from them in several fundamental ways. They are not equations of motion in the usual sense but rather a set of conditions which these motions must obey in the asymptotic future of an initial value surface. In addition to being asymptotic, these conditions of motion are approximate and apply, as do the original EIH equations, only to slowly moving systems. Also, they do not admit the run- away solutions of these other equations. As in the original EIH work, they are integrability conditions gotten from integrating the empty-space (i.e., source free) Einstein-Maxwell equations of general relativity over closed two-surfaces surrounding the sources of the fields governed by these equations. No additional ad hoc assumptions, such as the form of a force law or the introduction of inertial reaction terms, needed to derive the ALD equations are required for this purpose. Nor is there a need for any of the infinite mass renormalizations that are required in deriving these other equations.Comment: 15 page

    Current Flow and Pair Creation at Low Altitude in Rotation Powered Pulsars' Force-Free Magnetospheres: Space-Charge Limited Flow

    Get PDF
    (shortened) We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of Rotation Powered Pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We observe novel behavior. a) When the current density is less than the Goldreich-Julian (GJ) value (0<j/j_{GJ}<1), space charge limited acceleration of the current carrying beam is mild, with the full GJ charge density being comprised of the charge density of the beam, co-existing with a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are on the order of mc^2/e, and pair creation is absent. b) When the current density exceeds the GJ value (j/j_{GJ}>1), the system develops high voltage drops, causing emission of gamma rays and intense bursts of pair creation. The bursts exhibit limit cycle behavior, with characteristic time scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). c) In return current regions, where j/j_{GJ}<0, the system develops similar bursts of pair creation. In cases b) and c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady, finding that such steady flows can occupy only a small fraction of the current density parameter space of the force-free magnetospheric model. The generic polar flow dynamics and pair creation is strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage as a function of the applied current.Comment: 35 pages, 29 figures. Accepted for publication in MNRAS. Added new appendix, several minor changes in the tex

    Radiation in Lorentz violating electrodynamics

    Full text link
    Synchrotron radiation is analyzed in the classical effective Lorentz invariance violating model of Myers-Pospelov. Within the full far-field approximation we compute the electric and magnetic fields, the angular distribution of the power spectrum and the total emitted power in the m-th harmonic, as well as the polarization. We find the appearance of rather unexpected and large amplifying factors, which go together with the otherwise negligible naive expansion parameter. This opens up the possibility of further exploring Lorentz invariance violations by synchrotron radiation measurements in astrophysical sources where these amplifying factors are important.Comment: Presented at the Second Mexican Meeting on Theoretical and Experimental Physics, El Colegio Nacional, Mexico City, 6-10 September 200
    corecore