266 research outputs found

    Autism detection based on eye movement sequences on the web: a scanpath trend analysis approach

    Get PDF
    This is an accepted manuscript of an article published by ACM in W4A '20: Proceedings of the 17th International Web for All Conference on 20/04/2020, available online: https://doi.org/10.1145/3371300.3383340 The accepted version of the publication may differ from the final published version.Autism diagnostic procedure is a subjective, challenging and expensive procedure and relies on behavioral, historical and parental report information. In our previous, we proposed a machine learning classifier to be used as a potential screening tool or used in conjunction with other diagnostic methods, thus aiding established diagnostic methods. The classifier uses eye movements of people on web pages but it only considers non-sequential data. It achieves the best accuracy by combining data from several web pages and it has varying levels of accuracy on different web pages. In this present paper, we investigate whether it is possible to detect autism based on eye-movement sequences and achieve stable accuracy across different web pages to be not dependent on specific web pages. We used Scanpath Trend Analysis (STA) which is designed for identifying a trending path of a group of users on a web page based on their eye movements. We first identify trending paths of people with autism and neurotypical people. To detect whether or not a person has autism, we calculate the similarity of his/her path to the trending paths of people with autism and neurotypical people. If the path is more similar to the trending path of neurotypical people, we classify the person as a neurotypical person. Otherwise, we classify her/him as a person with autism. We systematically evaluate our approach with an eye-tracking dataset of 15 verbal and highly-independent people with autism and 15 neurotypical people on six web pages. Our evaluation shows that the STA approach performs better on individual web pages and provides more stable accuracy across different pages

    Adults with High-functioning Autism Process Web Pages With Similar Accuracy but Higher Cognitive Effort Compared to Controls

    Get PDF
    To accommodate the needs of web users with high-functioning autism, a designer's only option at present is to rely on guidelines that: i) have not been empirically evaluated and ii) do not account for the di erent levels of autism severity. Before designing effective interventions, we need to obtain an empirical understanding of the aspects that speci c user groups need support with. This has not yet been done for web users at the high ends of the autism spectrum, as often they appear to execute tasks effortlessly, without facing barriers related to their neurodiverse processing style. This paper investigates the accuracy and efficiency with which high-functioning web users with autism and a control group of neurotypical participants obtain information from web pages. Measures include answer correctness and a number of eye-tracking features. The results indicate similar levels of accuracy for the two groups at the expense of efficiency for the autism group, showing that the autism group invests more cognitive effort in order to achieve the same results as their neurotypical counterparts

    A validated microRNA profile with predictive potential in glioblastoma patients treated with bevacizumab

    Get PDF
    Purpose: We investigated whether microRNA expression data from glioblastoma could be used to produce a profile that defines a bevacizumab responsive group of patients. Patients and Methods: TCGA microRNA expression data from tumors resected at first diagnosis of glioblastoma in patients treated with bevacizumab at any time during the course of their disease were randomly separated into training (n=50) and test (n=37) groups for model generation. MicroRNA-seq data for 51 patients whose treatment included bevacizumab in the BELOB trial were used as an independent validation cohort. Results: Using penalized regression we identified 8 microRNAs as potential predictors of overall survival in the training set. We dichotomized the response score based on the most prognostic minimum of a density plot of the response scores (log-rank HR=0.16, p=1.2e-5) and validated the profile in the test cohort (one-sided log-rank HR=0.34, p=0.026). Analysis of the profile using all samples in the TCGA glioblastoma dataset, regardless of treatment received, (n=473) showed that the prediction of patient benefit was not significant (HR=0.84, p=0.083) suggesting the profile is specific to bevacizumab. Further independent validation of our microRNA profile in RNA-seq data from patients treated with bevacizumab (alone or in combination with CCNU) at glioblastoma recurrence in the BELOB trial confirmed that our microRNA profile predicted patient benefit from bevacizumab (HR=0.59, p=0.043). Conclusion: We have identified and validated an 8-microRNA profile that predicts overall survival in patients with glioblastoma treated with bevacizumab. This may be useful for identifying patients who are likely to benefit from this agent

    Clinical spectrum of early onset “Mediterranean” (homozygous p.P131L mutation) mitochondrial neurogastrointestinal encephalomyopathy

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive mitochondrial disorder characterized by cumulative and progressive gastrointestinal and neurological findings. This retrospective observational study, aimed to explore the time of presentation, diagnosis and clinical follow-up of 13 patients with a confirmed MNGIE disease of Mediterranean origin. The mean age of symptom onset was 7 years (6 months−21 years) and the average diagnosis age was 15.4 years ±8.4. Four of 13 patients (30%) died before 30 years at the mean age of 19.7 years ±6.8. Cachexia and gastrointestinal symptoms were observed in all patients (100%). The mean body mass index standard deviation score at diagnosis was 4.8 ± 2.8. At least three subocclusive episodes were presented in patients who died in last year of their life. The main neurological symptom found in most patients was peripheral neuropathy (92%). Ten patients (77%) had leukoencephalopathy and the remaining three patients without were under 10 years of age. The new homozygous “Mediterranean” TYMP mutation, p.P131L (c.392 C > T) was associated with an early presentation and poor prognosis in nine patients (69%) from five separates families. Based on the observations from this Mediterranean MNGIE cohort, we propose that the unexplained abdominal pain combined with cachexia is an indicator of MNGIE. High-platelet counts and nerve conduction studies may be supportive laboratory findings and the frequent subocclusive episodes could be a negative prognostic factor for mortality. Finally, the homozygous p.P131L (c.392 C > T) mutation could be associated with rapid progressive disease with poor prognosis

    DeepWAS: multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning

    Get PDF
    Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe "DeepWAS", a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to 61 regulatory SNPs, called dSNPs, were associated with multiple sclerosis (MS, 4,888 cases and 10,395 controls), major depressive disorder (MDD, 1,475 cases and 2,144 controls), and height (5,974 individuals). These variants were mainly non-coding and reached at least nominal significance in classical GWAS. The prediction accuracy was higher for DeepWAS than for classical GWAS models for 91% of the genome-wide significant, MS-specific dSNPs. DSNPs were enriched in public or cohort-matched expression and methylation quantitative trait loci and we demonstrated the potential of DeepWAS to generate testable functional hypotheses based on genotype data alone. DeepWAS is available at https://github.com/cellmapslab/DeepWAS

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis

    Coccidian Infection Causes Oxidative Damage in Greenfinches

    Get PDF
    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research
    corecore