80 research outputs found

    Analysis of the genetic basis of height in large Jewish nuclear families.

    Get PDF
    Despite intensive study, most of the specific genetic factors that contribute to variation in human height remain undiscovered. We conducted a family-based linkage study of height in a unique cohort of very large nuclear families from a founder (Jewish) population. This design allowed for increased power to detect linkage, compared to previous family-based studies. Loci we identified in discovery families could explain an estimated lower bound of 6% of the variance in height in validation families. We showed that these loci are not tagging known common variants associated with height. Rather, we suggest that the observed signals arise from variants with large effects that are rare globally but elevated in frequency in the Jewish population

    Cost-effectiveness of population based BRCA testing with varying Ashkenazi Jewish ancestry.

    Get PDF
    BACKGROUND: Population-based BRCA1/BRCA2 testing has been found to be cost-effective compared with family history-based testing in Ashkenazi-Jewish women were >30 years old with 4 Ashkenazi-Jewish grandparents. However, individuals may have 1, 2, or 3 Ashkenazi-Jewish grandparents, and cost-effectiveness data are lacking at these lower BRCA prevalence estimates. We present an updated cost-effectiveness analysis of population BRCA1/BRCA2 testing for women with 1, 2, and 3 Ashkenazi-Jewish grandparents. STUDY DESIGN: Decision analysis model. METHODS: Lifetime costs and effects of population and family history-based testing were compared with the use of a decision analysis model. 56% BRCA carriers are missed by family history criteria alone. Analyses were conducted for United Kingdom and United States populations. Model parameters were obtained from the Genetic Cancer Prediction through Population Screening trial and published literature. Model parameters and BRCA population prevalence for individuals with 3, 2, or 1 Ashkenazi-Jewish grandparent were adjusted for the relative frequency of BRCA mutations in the Ashkenazi-Jewish and general populations. Incremental cost-effectiveness ratios were calculated for all Ashkenazi-Jewish grandparent scenarios. Costs, along with outcomes, were discounted at 3.5%. The time horizon of the analysis is "life-time," and perspective is "payer." Probabilistic sensitivity analysis evaluated model uncertainty. RESULTS: Population testing for BRCA mutations is cost-saving in Ashkenazi-Jewish women with 2, 3, or 4 grandparents (22-33 days life-gained) in the United Kingdom and 1, 2, 3, or 4 grandparents (12-26 days life-gained) in the United States populations, respectively. It is also extremely cost-effective in women in the United Kingdom with just 1 Ashkenazi-Jewish grandparent with an incremental cost-effectiveness ratio of £863 per quality-adjusted life-years and 15 days life gained. Results show that population-testing remains cost-effective at the £20,000-30000 per quality-adjusted life-years and $100,000 per quality-adjusted life-years willingness-to-pay thresholds for all 4 Ashkenazi-Jewish grandparent scenarios, with ≥95% simulations found to be cost-effective on probabilistic sensitivity analysis. Population-testing remains cost-effective in the absence of reduction in breast cancer risk from oophorectomy and at lower risk-reducing mastectomy (13%) or risk-reducing salpingo-oophorectomy (20%) rates. CONCLUSION: Population testing for BRCA mutations with varying levels of Ashkenazi-Jewish ancestry is cost-effective in the United Kingdom and the United States. These results support population testing in Ashkenazi-Jewish women with 1-4 Ashkenazi-Jewish grandparent ancestry

    BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling

    Get PDF
    Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research

    Prenatal Isolated Ventricular Septal Defect May Not Be Associated with Trisomy 21

    No full text
    The aim of this study was to examine if isolated fetal ventricular septal defect (VSD) is associated with trisomy 21. One hundred twenty six cases with prenatal VSD diagnosed by a pediatric cardiologist were reviewed. Cases with known risk factors for congenital heart disease, the presence of other major anomalies, soft signs for trisomy 21 or a positive screen test for trisomy 21 were excluded. Ninety two cases formed the study group. None of the cases in the study group had trisomy 21. The upper limit of prevalence for trisomy 21 in isolated VSD is 3%. When prenatal VSD is not associated with other major anomalies, soft markers for trisomy 21 or a positive nuchal translucency or biochemical screen, a decision whether to perform genetic amniocentesis should be individualized. The currently unknown association between isolated VSD and microdeletions and microduplications should be considered when discussing this option

    The spinal muscular atrophy with pontocerebellar hypoplasia gene VRK1 regulates neuronal migration through an amyloid-β precursor protein-dependent mechanism

    No full text
    Spinal muscular atrophy with pontocerebellar hypoplasia (SMA-PCH) is an infantile SMA variant with additional manifestations, particularly severe microcephaly. We previously identified a nonsense mutation in Vaccinia-related kinase 1 (VRK1), R358X, as a cause of SMA-PCH. VRK1-R358X is a rare founder mutation in Ashkenazi Jews, and additional mutations in patients of different origins have recently been identified.VRK1is a nuclear serine/threonine protein kinaseknownto play multiple roles in cellular proliferation, cell cycle regulation, and carcinogenesis. However, VRK1 was not known to have neuronal functions before its identification as a gene mutated in SMA-PCH. Here we show that VRK1-R358X homozygosity results in lack of VRK1 protein, and demonstrate a role for VRK1 in neuronal migration and neuronal stem cell proliferation. Using shRNA in utero electroporation in mice, we show that Vrk1 knockdown significantly impairs cortical neuronal migration, and affects the cell cycle of neuronal progenitors. Expression of wild-type human VRK1 rescues both proliferation and migration phenotypes. However, kinase-dead human VRK1 rescues only the migration impairment, suggesting the role of VRK1 in neuronal migration is partly noncatalytic. Furthermore, we found that VRK1 deficiency in human and mouse leads to downregulation of amyloid-β precursor protein (APP), a known neuronal migration gene. APP overexpression rescues the phenotype caused by Vrk1 knockdown, suggesting that VRK1 affects neuronal migration through an APP-dependent mechanism.This study was supported by grants from the Israel Science Foundation (Grant 702/13 to P.R. and E.L.-L., and Grant 47/10 and 322/13 to O.R. and T.S.); by the Minerva Foundation with funding from the Federal German Ministry for Education and Research, the Jérôme Lejeune Foundation, the Benoziyo Center for Neurological diseases, the Kekst Family Center for Medical Genetics, and the David and Fela Shapell Family Center for Genetic Disorders Research (to O.R.); by the JAE (Programa Junta para la Amplición de Estudios) Consejo Superior de Investigaciones Científicas Fondo Social Europeo fellowship (to L.C.); by the Ministerio de Educación, Ciencia e Innovación (SAF2010-14935 and SAF2013-44810R, to P.A.L.); and by Kutxa-Fundación Inbiomed (to P.A.L.).Peer Reviewe
    • …
    corecore