163 research outputs found

    Performance evaluation of an ORC unit integrated to a waste heat recovery system in a steel mill

    Get PDF
    Waste heat revalorization creates interesting opportunities to energy intensive industries. In the present project, a large-scale ORC pilot plant along with a waste heat recovery unit (WHRU) in a steel mill has been designed, commissioned and operated. The plant is part of the European Commission funded PITAGORAS project and it has been installed at ORI MARTIN in Brescia (Italy). Waste heat is recovered from the fumes of the Electric Arc Furnace (EAF) to produce saturated steam which is then delivered to a district heating (DH) network during heating season and to the ORC for electricity generation during the rest of the year. The main challenge was the integration of these systems in a single plant since the heat source is highly unstable and steady heat load is preferable for the DH and ORC for their safe operation. A steam accumulator of 150m3 volume was implemented between the WHRU and the ORC/DH systems to maintain a steady discharge pressure, to reduce the fast transients and to extend the supply over longer periods. The ORC has a nominal power output of 1,8MW and the preliminary results of the first weeks of operation of the ORC unit resulted in a net efficiency of 21.7%. Currently the plant is undergoing monitoring campaign which will provide additional data to further evaluate and optimize the system.The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° ENER / FP7EN / 314596 / PITAGORAS

    Alteration of the tree–soil microbial system triggers a feedback loop that boosts holm oak decline

    Get PDF
    In anthropic savanna ecosystems from the Iberian Peninsula (i.e. dehesa), complex interactions between climate change, pathogen outbreaks and human land use are presumed to be behind the observed increase in holm oak decline. These environmental disturbances alter the plant–soil microbial continuum, which can destabilize the ecological balance that sustains tree health. Yet, little is known about the underlying mechanisms, particularly the directions and nature of the causal–effect relationships between plants and soil microbial communities. In this study, we aimed to determine the role of plant–soil feedbacks in climate-induced holm oak decline in the Iberian dehesa. Using a gradient of holm oak health, we reconstructed key soil biogeochemical cycles mediated by soil microbial communities. We used quantitative microbial element cycling (QMEC), a functional gene-array-based high-throughput technique to assess microbial functional potential in carbon, nitrogen, phosphorus and sulphur cycling. The onset of holm oak decline was positively related to the increase in relative abundance of soil microbial functional genes associated with denitrification and phosphorus mineralization (i.e. nirS3, ppx and pqqC; parameter value: 0.21, 0.23 and 0.4; p < 0.05). Structural equation model (χ2 = 32.26, p-value = 0.73), moreover, showed a negative association between these functional genes and soil nutrient availability (i.e. mainly mineral nitrogen and phosphate). Particularly, the holm oak crown health was mainly determined by the abundance of phosphate (parameter value = 0.27; p-value < 0.05) and organic phosphorus (parameter value = −0.37; p-value < 0.5). Hence, we propose a potential tree–soil feedback loop, in which the decline of holm oak promotes changes in the soil environment that triggers changes in key microbial-mediated metabolic pathways related to the net loss of soil nitrogen and phosphorus mineral forms. The shortage of essential nutrients, in turn, affects the ability of the trees to withstand the environmental stressors to which they are exposed. Read the free Plain Language Summary for this article on the Journal blog. © 2023 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.This research has been mainly funded by the Spanish Government through the IBERYCA project (CGL2017‐84723‐P), its associated FPI scholarship BES‐2014‐067971 (ME‐V), the SMARTSOIL (PID2020‐113244GB‐C21) and SMARTHEALTH (PID2020‐113244GA‐C22) projects (both funded by MCIN/AEI/10.13039/501100011033). It has been further supported by the BC3 María de Maeztu excellence accreditation (MDM‐2017‐0714; the Spanish Government), by the BERC 2018–2021 and by the UPV/EHU‐GV IT‐1648‐22 (from the Basque Government). Additionally, this research was further supported through the grant Holistic management practices, modelling and monitoring for European forest soils—HoliSoils (EU Horizon 2020 Grant Agreement No 101000289) and the ‘Juan de la Cierva programme’ (MV; IJCI‐2017‐34640; the Spanish Government). We acknowledge the Nutrilab‐URJC (Mostoles, Spain) laboratory services for the soil chemical analyses and SGIker of UPV/EHU (Leioa, Spain) for the technical and staff support for the high‐throughput quantitative‐PCR analysis. We also thank the private owners of the dehesas for facilitating our access to their properties. We are thankful to Celia López‐Carrasco Fernández and the ‘Consejería de Agricultura, Medioambiente y Desarrollo rural de la Junta de Castilla‐La Mancha’ for all the logistical support. The ‘Tree’ icon by Hey Rabbit illustrator, from thenounproject.com were used to design the Graphical abstract. Open Access funding provided by the Univer

    ReCROP: bioinocula and CROPping systems: an integrated biotechnological approach for improving crop yield, biodiversity and REsilience of Mediterranean agro-ecosystems

    Get PDF
    The Mediterranean economy is highly dependent on agriculture. However, agricultural sustainability and productivity in this region is under serious threat due to climate change and the depletion of water resources. This is worsened by poor management practices, such as the overuse of chemical fertilizers, pesticides, overgrazing and monoculture farming. Recent climate change models indicate that European and Northern African regions will undergo extreme climatic events throughout the year, this will negatively impact crop yield and productivity. Summer droughts and heat waves periods will increase for most parts of Europe, as well as short intense rain events. Preserving and improving productive agricultural land in this region is vital, especially through the application of sustainable soil and crop management practices that promote soil fertility and water conservation; this will improve resilience to degradation and to extreme climatic events. ReCROP is a European project that aims to identify sustainable and resilient agricultural production systems in the Mediterranean region through the combined use of biotechnological tools, such as bioinoculants, and environmentally friendly agronomic practices. ReCROP will assess different agroecosystems with key local crops (i.e vineyards, maize and aromatic/medicinal plants) of the Mediterranean region under field conditions to help improve crop resilience, yield, water conservation and soil health under the current scenario of climate change. Soil organisms play a key role in ecosystem processes, leading to essential soil functions and are used as bioindicators of soil quality. Their monitoring is crucial to assess the impact of beneficial agricultural practices on soil functioning. One of the goals of ReCROP will be to evaluate the beneficial impact of different agricultural practices on the structural and functional soil diversity at different levels of the soil food web. The macrofauna and mesofauna (i.e springtails and mites) as well as microbial biomass, activity and biodiversity of soil microbial communities (bacteria, archaea, fungi) will be monitored with a special effort to produce a multitaxa index of soil biological quality. This work will contribute to identify which practices are beneficial for the biodiversity of Mediterranean agricultural soils, thus providing resistance and resilience, in terms of soil functioning and against soil disturbances.info:eu-repo/semantics/publishedVersio

    Effect of a rehabilitation-based chronic disease management program targeting severe COPD exacerbations on readmission patterns

    Get PDF
    Pulmonary rehabilitation (PR) is recommended after a severe COPD exacerbation, but its short- and long-term effects on health care utilization have not been fully established. The aims of this study were to evaluate patient compliance with a chronic disease management (CDM) program incorporating home-based exercise training as the main component after a severe COPD exacerbation and to determine its effects on health care utilization in the following year. COPD patients with a severe exacerbation were included in a case-cohort study at admission. An intervention group participated in a nurse-supervised CDM program during the 2 months after discharge, comprising of home-based PR with exercise components directly supervised by a physiotherapist, while the remaining patients followed usual care. Nineteen of the twenty-one participants (90.5%) were compliant with the CDM program and were compared with 29 usual-care patients. Compliance with the program was associated with statistically significant reductions in admissions due to respiratory disease in the following year (median [interquartile range]: 0 [0-1] vs 1 [0-2.5]; P =0.022) and in days of admission (0 [0-7] vs 7 [0-12]; P =0.034), and multiple linear regression analysis confirmed the protective effect of the CDM program (β coefficient −0.785, P =0.014, and R 2 =0.219). A CDM program incorporating exercise training for COPD patients without limiting comorbidities after a severe exacerbation achieves high compliance and reduces admissions in the year following after the intervention

    GFP-tagged multimetal-tolerant bacteria and their detection in the rhizosphere of white mustard

    Get PDF
    The introduction of rhizobacteria that tolerate heavy metals is a promising approach to support plants involved in phytoextraction and phytostabilisation. In this study, soil of a metal-mine wasteland was analyzed for the presence of metal-tolerant bacterial isolates, and the tolerance patterns of the isolated strains for a number of heavy metals and antibiotics were compared. Several of the multimetal-tolerant strains were tagged with a broad host range reporter plasmid (i.e. pPROBE-NT) bearing a green fluorescent protein marker gene (gfp). Overall, the metal-tolerant isolates were predominately Gram-negative bacteria. Most of the strains showed a tolerance to five metals (Zn, Cu, Ni, Pb and Cd), but with differing tolerance patterns. From among the successfully tagged isolates, we used the transconjugant Pseudomonas putida G25 (pPROBE-NT) to inoculate white mustard seedlings. Despite a significant decrease in transconjugant abundance in the rhizosphere, the gfp-tagged cells survived on the root surfaces at a level previously reported for root colonisers

    Effect of Systemic Hypertension With Versus Without Left Ventricular Hypertrophy on the Progression of Atrial Fibrillation (from the Euro Heart Survey).

    Get PDF
    Hypertension is a risk factor for both progression of atrial fibrillation (AF) and development of AF-related complications, that is major adverse cardiac and cerebrovascular events (MACCE). It is unknown whether left ventricular hypertrophy (LVH) as a consequence of hypertension is also a risk factor for both these end points. We aimed to assess this in low-risk AF patients, also assessing gender-related differences. We included 799 patients from the Euro Heart Survey with nonvalvular AF and a baseline echocardiogram. Patients with and without hypertension were included. End points after 1 year were occurrence of AF progression, that is paroxysmal AF becoming persistent and/or permanent AF, and MACCE. Echocardiographic LVH was present in 33% of 379 hypertensive patients. AF progression after 1 year occurred in 10.2% of 373 patients with rhythm follow-up. In hypertensive patients with LVH, AF progression occurred more frequently as compared with hypertensive patients without LVH (23.3% vs 8.8%, p = 0.011). In hypertensive AF patients, LVH was the most important multivariably adjusted determinant of AF progression on multivariable logistic regression (odds ratio 4.84, 95% confidence interval 1.70 to 13.78, p = 0.003). This effect was only seen in male patients (27.5% vs 5.8%, p = 0.002), while in female hypertensive patients, no differences were found in AF progression rates regarding the presence or absence of LVH (15.2% vs 15.0%, p = 0.999). No differences were seen in MACCE for hypertensive patients with and without LVH. In conclusion, in men with hypertension, LVH is associated with AF progression. This association seems to be absent in hypertensive women

    Progression From Paroxysmal to Persistent Atrial Fibrillation. Clinical Correlates and Prognosis

    Get PDF
    Objectives: We investigated clinical correlates of atrial fibrillation (AF) progression and evaluated the prognosis of patients demonstrating AF progression in a large population. Background: Progression of paroxysmal AF to more sustained forms is frequently seen. However, not all patients will progress to persistent AF. Methods: We included 1,219 patients with paroxysmal AF who participated in the Euro Heart Survey on AF and had a known rhythm status at follow-up. Patients who experienced AF progression after 1 year of follow-up were identified. Results: Progression of AF occurred in 178 (15%) patients. Multivariate analysis showed that heart failure, age, previous transient ischemic attack or stroke, chronic obstructive pulmonary disease, and hypertension were the only independent predictors of AF progression. Using the regression coefficient as a benchmark, we calculated the HATCH score. Nearly 50% of the patients with a HATCH score &gt;5 progressed to persistent AF compared with only 6% of the patients with a HATCH score of 0. During follow-up, patients with AF progression were more often admitted to the hospital and had more major adverse cardiovascular events. Conclusions: A substantial number of patients progress to sustained AF within 1 year. The clinical outcome of these patients regarding hospital admissions and major adverse cardiovascular events was worse compared with patients demonstrating no AF progression. Factors known to cause atrial structural remodeling (age and underlying heart disease) were independent predictors of AF progression. The HATCH score may help to identify patients who are likely to progress to sustained forms of AF in the near future. \ua9 2010 American College of Cardiology Foundation
    corecore