Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and silicoaluminophosphates SAPO-34 and SAPO-18

<u>E. Epelde*,</u> A.G. Gayubo, M. Gamero, A.T. Aguayo, J. Bilbao <u>eva.epelde@ehu.es</u> Departamento de Ingeniería Química, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

MILAN

Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and SAPOs U.B.M. EHU

Propylene: key building block for the production of important petrochemicals

RESULTS

CONCLUSIONS

J.S. Plotkin , Catalysis Today ,106 (2005) 10–14

Propylene worlwide demand has been increasing at an annual average of 5.7% and by year 2015, demand will grow to 105 million tonnes T. Mokrani and M. Scurrell, Catalysis Reviews, 51 (2009),1

Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and SAPOs

Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and SAPOs

C₂-C₄ olefin interconversion

✓Acid catalysts → Mechanism of oligomerization-cracking

✓ Shape selectivity of the catalysts significant role in propylene yield and selectivity

New catalyst development for C₂-C₄ olefin catalytic cracking

- ✓ Modification of HZSM-5
 - ✓ by metal incorporation (P, P-La, Ni, K...)
 - ✓ by dealumination methods (NaOH,
 - steaming...)
- ✓ Silicoaluminophosphates (SAPO-34, SAPO-18)

Aim of this work: Study the role of the properties of the catalyst (acidity and shape selectivity) in the intensification fo propylene production from 1-butene and ethylene transformation (2007) 29-37 A.T. Aguay Conversion-propylene yield, J. Bilbao, Inschegtivitynskability (2010)

EXPERIMENTAL INTRODUCTION

RESULTS

CONCLUSIONS

- reducing deactivation by coke
- increasing hydrothermal stability

A.T. Aguayo, A.G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Appl. Catal. A.: Gen. 283 (2005) 197

Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and SAPOs U.P.V.

Catalyst characterization

N₂ adsorption-desorption (77 K)

INTRODUCTION

EXPERIMENTAL

RESULTS

CONCLUSIONS

Active phase	S _{BET} (m²/g)	V _{mesopore} (cm ³ /g)	V _{micropore} (cm ³ /g)
HZ-30	448	0.15	0.12
HZ-80	556	0.11	0.10
HZ-280	512	0.10	0.16
SAPO-18	797	0.08	0.28
SAPO-34	611	0.06	0.24
Catalyst	S _{BET} (m²/g)	V _{mesopore} (cm ³ /g)	V _{micropore} (cm ³ /g)
Catalyst HZ-30	S _{BET} (m ² /g) 202	V _{mesopore} (cm ³ /g) 0.53	V _{micropore} (cm ³ /g) 0.042
Catalyst HZ-30 HZ-80	S _{BET} (m ² /g) 202 209	V _{mesopore} (cm ³ /g) 0.53 0.48	V _{micropore} (cm ³ /g) 0.042 0.036
Catalyst HZ-30 HZ-80 HZ-280	S _{BET} (m ² /g) 202 209 231	V _{mesopore} (cm ³ /g) 0.53 0.48 0.38	V _{micropore} (cm ³ /g) 0.042 0.036 0.048
Catalyst HZ-30 HZ-80 HZ-280 SAPO-18	S _{BET} (m ² /g) 202 209 231 236	V _{mesopore} (cm ³ /g) 0.53 0.48 0.38 0.23	V _{micropore} (cm ³ /g) 0.042 0.036 0.048 0.072

EHU

Catalyst characterization

DSC (150 $^{\circ}$ C)-TPD of NH₃ (up to 550 $^{\circ}$ C)

Active	Total acidity	T peak(°C) in the TPD	
phase	(mmol NH ₃ g ⁻¹)	1st	2nd
		peak	peak
HZ-30	1.07	230	340
HZ-80	0.46	210	395
HZ-280	0.15	227	325
SAPO-18	0.37	243	335
SAPO-34	0.64	258	348

These acid properties remain after agglomeration

RESULTS

Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and SAPOs

Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and SAPOs U.P.V. E.H.U

Terms expressed as CH₂ equivalent units, corresponding to zero time on stream

ACIDITY AND ACID STRENGTH OF SAPO-34

Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and SAPOs

Ethylene conversion requires low values of SiO₂/Al₂O₃ ratio \checkmark $HZ-280 \rightarrow SC_3H_6, YC_3H_6$ \checkmark

Propylene production from 1-butene and ethylene catalytic cracking: Study of the performance of HZSM-5 zeolites and SAPOs EHU **Transformation of ethylene**

Shape selectivity catalysts

CONCLUSIONS

- The moderation of total acidity and acid strength is an appropriate way to modify HZSM-5 zeolites in order to enhance propylene production
- SAPO-18 shows higher propylene selectivities using both feeds, although the deactivation by coke is slightly faster than for HZ-280 catalyst
- ✓ The use of SAPO-34 is conditioned by the fast deactivation by coke
- Operating conditions may have a great influence; the study should be extended to higher temperatures (up to 550 °C) and feed composed of ethylene/propylene mixtures

ACKNOWLEDGMENTS

This work was carried out with the financial support of the Ministry of Science and Innovation of the Spanish Government (Project CTQ2010-191888) and of the Department of Education Universities and Research of the Basque Government (Project GIC07/24-IT-220-07).

E. Epelde is grateful for the Ph.D. grant from the Department of Education, University and Research of the Basque country (BFI08.122).

THANK VOU eva.epelde@ehu.es

