32 research outputs found

    User Interface Abstraction for enabling TV set based Inclusive Access to the Information Society

    Get PDF
    199 p.The television (TV) set is present in most homes worldwide, and is the most used Information and Communication Technology (ICT). Despite its large implantation in the market, the interactive services consumption on TV set is limited. This thesis focuses on overcoming the following limiting factors: (i) limited Human Computer Interaction and (ii) lack of considering user’s real life context in the digital television (dTV) service integration strategy. Making interactive services accessible to TV set’s large user base, and especially to the most vulnerable ones, is understood as the path to integrate the mankind with the information society. This thesis explores the use of user interface abstraction technologies to reach the introduced goals. The main contributions of this thesis are: (i) an approach to enable the universally accessible remote control of the TV set, (ii) an approach for the provision of universally accessible interactive services through TV sets, and (iii) an approach for the provision of universally accessible services in the TV user’s real life context. We have implemented the contributing approaches for different use cases, and we have evaluated them with real users, achieving good results

    Web-Based Interfaces for Virtual C. elegans Neuron Model Definition, Network Configuration, Behavioral Experiment Definition and Experiment Results Visualization

    Get PDF
    The Si elegans platform targets the complete virtualization of the nematode Caenorhabditis elegans, and its environment. This paper presents a suite of unified web-based Graphical User Interfaces (GUIs) as the main user interaction point, and discusses their underlying technologies and methods. The user-friendly features of this tool suite enable users to graphically create neuron and network models, and behavioral experiments, without requiring knowledge of domain-specific computer-science tools. The framework furthermore allows the graphical visualization of all simulation results using a worm locomotion and neural activity viewer. Models, experiment definitions and results can be exported in a machine-readable format, thereby facilitating reproducible and cross-platform execution of in silico C. elegans experiments in other simulation environments. This is made possible by a novel XML-based behavioral experiment definition encoding format, a NeuroML XML-based model generation and network configuration description language, and their associated GUIs. User survey data confirms the platform usability and functionality, and provides insights into future directions for web-based simulation GUIs of C. elegans and other living organisms. The tool suite is available online to the scientific community and its source code has been made available
    corecore