23 research outputs found

    A Novel Insulin/Glucose Model after a Mixed-Meal Test in Patients with Type 1 Diabetes on Insulin Pump Therapy

    Get PDF
    Current closed-loop insulin delivery methods stem from sophisticated models of the glucose-insulin (G/I) system, mostly based on complex studies employing glucose tracer technology. We tested the performance of a new minimal model (GLUKINSLOOP 2.0) of the G/I system to characterize the glucose and insulin dynamics during multiple mixed meal tests (MMT) of different sizes in patients with type 1 diabetes (T1D) on insulin pump therapy (continuous subcutaneous insulin infusion, CSII). The GLUKINSLOOP 2.0 identified the G/I system, provided a close fit of the G/I time-courses and showed acceptable reproducibility of the G/I system parameters in repeated studies of identical and double-sized MMTs. This model can provide a fairly good and reproducible description of the G/I system in T1D patients on CSII, and it may be applied to create a bank of "virtual" patients. Our results might be relevant at improving the architecture of upcoming closed-loop CSII systems

    DEBACER: a method for slicing moderated debates

    Get PDF
    Subjects change frequently in moderated debates with several participants, such as in parliamentary sessions, electoral debates, and trials. Partitioning a debate into blocks with the same subject is essential for understanding. Often a moderator is responsible for defining when a new block begins so that the task of automatically partitioning a moderated debate can focus solely on the moderator's behavior. In this paper, we (i) propose a new algorithm, DEBACER, which partitions moderated debates; (ii) carry out a comparative study between conventional and BERTimbau pipelines; and (iii) validate DEBACER applying it to the minutes of the Assembly of the Republic of Portugal. Our results show the effectiveness of DEBACER.info:eu-repo/semantics/publishedVersio

    The small satellite NINA-MITA to study galactic and solar cosmic rays in low-altitude polar orbit

    Get PDF
    Abstract The satellite MITA, carrying on board the scientific payload NINA-2, was launched on July the 15th, 2000 from the cosmodrome of Plesetsk (Russia) with a Cosmos-3M rocket. The satellite and the payload are currently operating within nominal parameters. NINA-2 is the first scientific payload for the technological flight of the Italian small satellite MITA. The detector used in this mission is identical to the one already flying on the Russian satellite Resurs-O1 n.4 in a 840-km sun-synchronous orbit, but makes use of the extensive computer and telemetry capabilities of MITA bus to improve the active data acquisition time. NINA physics objectives are to study cosmic nuclei from hydrogen to iron in the energy range between 10 MeV/n and 1 GeV/n during the years 2000–2003, that is the solar maximum period. The device is capable of charge identification up to iron with isotope sensitivity up to oxigen. The 87.3 degrees, 460 km altitude polar orbit allows investigations of cosmic rays of solar and galactic origin, so to study long and short term solar transient phenomena, and the study of the trapped radiation at higher geomagnetic cutoff

    Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

    Full text link
    Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.Comment: 15 page

    Stroboscopic torsion pendulum

    Get PDF
    We report on a simple, inexpensive readout for torsion pendulums, suitable for robust applications like teaching-lab equipment or monitoring of large ampl- itude oscillations. A short light pulse is recorded every time a reflective band on the pendulum inertial member passes in front of the sensor, an infrared LED pair (emitter–receiver). Simple algebraic manipulations on the time series of these pulses arrival times allow one to extract the resonant frequency as well as the decay time of the pendulum. This readout is insensitive to the amplitude of oscillation and is therefore suitable for monitoring torsional oscillations of large amplitude, where traditonal readouts like optical levers or auto- collimators encounter dynamic range limitations
    corecore