15 research outputs found

    High Levels of Genetic Differentiation between Ugandan Glossina fuscipes fuscipes Populations Separated by Lake Kyoga

    Get PDF
    The two types of sleeping sickness in West and East Africa are markedly distinct, require different treatments, and are caused by different parasites. The only country where both parasites are present is Uganda, where they are separated by a narrow 160 km disease-free belt. Because there is no restriction on the movement of humans and animals between the two disease zones, this separation is puzzling. We asked whether this disjunct distribution can be explained by variation within the tsetse fly that is largely responsible for transmitting both diseases in Uganda, Glossina fuscipes fuscipes. We therefore examined whether this tsetse subspecies is genetically uniform across Uganda. Our results indicate that G. f. fusicipes is not genetically different between the two disease zones, but there are clear genetic differences between northern and southern populations, which are separated by Lake Kyoga. Therefore, it is unlikely that variation in the tsetse fly determines the distribution of the two parasites. This implies that the two diseases may fuse in the near future, which would greatly complicate diagnosis and treatment of sleeping sickness in any potential area of overlap

    No evidence for association with APOL1 kidney disease risk alleles and Human African Trypanosomiasis in two Ugandan populations:

    Get PDF
    Human African trypanosomiasis (HAT) manifests as an acute form caused by Trypanosoma brucei rhodesiense (Tbr) and a chronic form caused by Trypanosoma brucei gambiense (Tbg). Previous studies have suggested a host genetic role in infection outcomes, particularly for APOL1. We have undertaken a candidate gene association studies (CGAS) in a Ugandan Tbr and a Tbg HAT endemic area, to determine whether polymorphisms in IL10, IL8, IL4, HLAG, TNFA, TNX4LB, IL6, IFNG, MIF, APOL1, HLAA, IL1B, IL4R, IL12B, IL12R, HP, HPR, and CFH have a role in HAT

    Tracking the Feeding Patterns of Tsetse Flies (Glossina Genus) by Analysis of Bloodmeals Using Mitochondrial Cytochromes Genes

    Get PDF
    Tsetse flies are notoriously difficult to observe in nature, particularly when populations densities are low. It is therefore difficult to observe them on their hosts in nature; hence their vertebrate species can very often only be determined indirectly by analysis of their gut contents. This knowledge is a critical component of the information on which control tactics can be developed. The objective of this study was to determine the sources of tsetse bloodmeals, hence investigate their feeding preferences. We used mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) gene sequences for identification of tsetse fly blood meals, in order to provide a foundation for rational decisions to guide control of trypanosomiasis, and their vectors. Glossina swynnertoni were sampled from Serengeti (Tanzania) and G. pallidipes from Kenya (Nguruman and Busia), and Uganda. Sequences were used to query public databases, and the percentage identities obtained used to identify hosts. An initial assay showed that the feeds were from single sources. Hosts identified from blood fed flies collected in Serengeti ecosystem, included buffaloes (25/40), giraffes (8/40), warthogs (3/40), elephants (3/40) and one spotted hyena. In Nguruman, where G. pallidipes flies were analyzed, the feeds were from elephants (6/13) and warthogs (5/13), while buffaloes and baboons accounted for one bloodmeal each. Only cattle blood was detected in flies caught in Busia and Uganda. Out of four flies tested in Mbita Point, Suba District in western Kenya, one had fed on cattle, the other three on the Nile monitor lizard. These results demonstrate that cattle will form an integral part of a control strategy for trypanosomiasis in Busia and Uganda, while different approaches are required for Serengeti and Nguruman ecosystems, where wildlife abound and are the major component of the tsetse fly food source

    Cerebrospinal fluid neopterin as marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness.

    Get PDF
    BACKGROUND: Sleeping sickness, or human African trypanosomiasis (HAT), is a protozoan disease that affects rural communities in sub-Saharan Africa. Determination of the disease stage, essential for correct treatment, represents a key issue in the management of patients. In the present study we evaluated the potential of CXCL10, CXCL13, ICAM-1, VCAM-1, MMP-9, B2MG, neopterin and IgM to complement current methods for staging Trypanosoma brucei gambiense patients. METHODS AND FINDINGS: Five hundred and twelve T. b. gambiense HAT patients originated from Angola, Chad and the Democratic Republic of the Congo (D.R.C.). Their classification as stage 2 (S2) was based on the number of white blood cells (WBC) (>5/µL) or presence of parasites in the cerebrospinal fluid (CSF). The CSF concentration of the eight markers was first measured on a training cohort encompassing 100 patients (44 S1 and 56 S2). IgM and neopterin were the best in discriminating between the two stages of disease with 86.4% and 84.1% specificity respectively, at 100% sensitivity. When a validation cohort (412 patients) was tested, neopterin (14.3 nmol/L) correctly classified 88% of S1 and S2 patients, confirming its high staging power. On this second cohort, neopterin also predicted both the presence of parasites, and of neurological signs, with the same ability as IgM and WBC, the current reference for staging. CONCLUSIONS: This study has demonstrated that neopterin is an excellent biomarker for staging T. b. gambiense HAT patients. A rapid diagnostic test for detecting this metabolite in CSF could help in more accurate stage determination

    Phylogeography and Population Structure of Glossina fuscipes fuscipes in Uganda: Implications for Control of Tsetse

    Get PDF
    Glossina fuscipes fuscipes is the most common species of tsetse in Uganda, where it transmits human sleeping sickness and nagana, a related disease of cattle. A consortium of African countries dedicated to controlling these diseases is poised to begin area wide control of tsetse, but a critical question remains: What is the most appropriate geographical scale for these activities? To address this question, we used population genetics to determine the extent of linkage between populations of tsetse confined to discrete patches of riverine habitat. Our results suggest that Uganda was colonized by two distinct lineages of G. f. fuscipes, which now co-occur only in a narrow band across central Uganda. Evidence for interbreeding at the zone of contact and movement of genes from the south to the north suggest that this historical genetic structure may dissolve in the future. At smaller scales, we have demonstrated that exchange of genes among neighboring populations via dispersal is at equilibrium with the differentiating force of genetic drift. Our results highlight the need for investment in vector control programs that account for the linkage observed among tsetse populations. Given its genetic isolation and its location at the far edge of G. fuscipes' range, the Lake Victoria region appears to be an appropriate target for area wide control

    Mechanisms of Arsenical and Diamidine Uptake and Resistance in Trypanosoma brucei

    No full text
    Sleeping sickness, caused by Trypanosoma brucei spp., has become resurgent in sub-Saharan Africa. Moreover, there is an alarming increase in treatment failures with melarsoprol, the principal agent used against late-stage sleeping sickness. In T. brucei, the uptake of melarsoprol as well as diamidines is thought to be mediated by the P2 aminopurine transporter, and loss of P2 function has been implicated in resistance to these agents. The trypanosomal gene TbAT1 has been found to encode a P2-type transporter when expressed in yeast. Here we investigate the role of TbAT1 in drug uptake and drug resistance in T. brucei by genetic knockout of TbAT1. Tbat1-null trypanosomes were deficient in P2-type adenosine transport and lacked adenosine-sensitive transport of pentamidine and melaminophenyl arsenicals. However, the null mutants were only slightly resistant to melaminophenyl arsenicals and pentamidine, while resistance to other diamidines such as diminazene was more pronounced. Nevertheless, the reduction in drug sensitivity might be of clinical significance, since mice infected with tbat1-null trypanosomes could not be cured with 2 mg of melarsoprol/kg of body weight for four consecutive days, whereas mice infected with the parental line were all cured by using this protocol. Two additional pentamidine transporters, HAPT1 and LAPT1, were still present in the null mutant, and evidence is presented that HAPT1 may be responsible for the residual uptake of melaminophenyl arsenicals. High-level arsenical resistance therefore appears to involve the loss of more than one transporter

    Genetic Diversity and Population Structure of Trypanosoma brucei in Uganda: Implications for the Epidemiology of Sleeping Sickness and Nagana

    No full text
    BACKGROUND:While Human African Trypanosomiasis (HAT) is in decline on the continent of Africa, the disease still remains a major health problem in Uganda. There are recurrent sporadic outbreaks in the traditionally endemic areas in south-east Uganda, and continued spread to new unaffected areas in central Uganda. We evaluated the evolutionary dynamics underpinning the origin of new foci and the impact of host species on parasite genetic diversity in Uganda. We genotyped 269 Trypanosoma brucei isolates collected from different regions in Uganda and southwestern Kenya at 17 microsatellite loci, and checked for the presence of the SRA gene that confers human infectivity to T. b. rhodesiense. RESULTS:Both Bayesian clustering methods and Discriminant Analysis of Principal Components partition Trypanosoma brucei isolates obtained from Uganda and southwestern Kenya into three distinct genetic clusters. Clusters 1 and 3 include isolates from central and southern Uganda, while cluster 2 contains mostly isolates from southwestern Kenya. These three clusters are not sorted by subspecies designation (T. b. brucei vs T. b. rhodesiense), host or date of collection. The analyses also show evidence of genetic admixture among the three genetic clusters and long-range dispersal, suggesting recent and possibly on-going gene flow between them. CONCLUSIONS:Our results show that the expansion of the disease to the new foci in central Uganda occurred from the northward spread of T. b. rhodesiense (Tbr). They also confirm the emergence of the human infective strains (Tbr) from non-infective T. b. brucei (Tbb) strains of different genetic backgrounds, and the importance of cattle as Tbr reservoir, as confounders that shape the epidemiology of sleeping sickness in the region
    corecore