54 research outputs found

    Vegetation Dynamics within the North American Monsoon Region

    Get PDF
    Abstract The North American monsoon (NAM) leads to a large increase in summer rainfall and a seasonal change in vegetation in the southwestern United States and northwestern Mexico. Understanding the interactions between NAM rainfall and vegetation dynamics is essential for improved climate and hydrologic prediction. In this work, the authors analyze long-term vegetation dynamics over the North American Monsoon Experiment (NAME) tier I domain (20°–35°N, 105°–115°W) using normalized difference vegetation index (NDVI) semimonthly composites at 8-km resolution from 1982 to 2006. The authors derive ecoregions with similar vegetation dynamics using principal component analysis and cluster identification. Based on ecoregion and pixel-scale analyses, this study quantifies the seasonal and interannual vegetation variations, their dependence on geographic position and terrain attributes, and the presence of long-term trends through a set of phenological vegetation metrics. Results reveal that seasonal biomass productivity, as captured by the time-integrated NDVI (TINDVI), is an excellent means to synthesize vegetation dynamics. High TINDVI occurs for ecosystems with a short period of intense greening tuned to the NAM or with a prolonged period of moderate greenness continuing after the NAM. These cases represent different plant strategies (deciduous versus evergreen) that can be adjusted along spatial gradients to cope with seasonal water availability. Long-term trends in TINDVI may also indicate changing conditions favoring ecosystems that intensively use NAM rainfall for rapid productivity, as opposed to delayed and moderate greening. A persistence of these trends could potentially result in the spatial reorganization of ecosystems in the NAM region

    Hydrologic modeling using triangulated irregular networks : terrain representation, flood forecasting and catchment response

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2003.Includes bibliographical references.Numerical models are modern tools for capturing the spatial and temporal variability in the land-surface hydrologic response to rainfall and understanding the physical relations between internal watershed processes and observed streamflow. This thesis presents the development and application of a distributed hydrologic model distinguished by its representation of topography through a triangulated irregular network (TIN) and its coupling of the surface and subsurface processes leading to the catchment response. As a research tool for hydrologic forecasting and experimentation, the TIN-based Real-time Integrated Basin Simulator (tRIBS) fully incorporates spatial heterogeneities in basin topography, surface descriptors and hydrometeorological forcing to produce dynamic maps of hydrologic states and fluxes. These capabilities allow investigation of theoretical questions and practical problems in hydrologic science and water resources engineering. Three related themes are developed in this thesis. First, a set of methods are developed for constructing TIN topographic models from raster digital elevation models (DEM) for hydrologic and geomorphic applications. A new approach for representing a steady-state estimate of a particular watershed process within the physical mesh is introduced. Hydrologic comparisons utilizing different terrain models are made to investigate the suitable level of detail required for capturing process dynamics accurately. Second, the TIN-based model is utilized in conjunction with a rainfall forecasting algorithm to assess the space-time flood predictability. For two hydrometeorological case studies, the forecast skill is assessed as a function of rainfall forecast lead time, catchment scale and the spatial variability in the quantitative precipitation forecasts (QPF). Third, the surface and subsurface runoff response in a complex basin is investigated with respect to changes in storm properties and the initial water table position.The partitioning of rainfall into runoff production mechanisms is found to be a causative factor in the nonlinearity and scale-dependence observed in the basin hydrograph response. The model applications presented in this thesis highlight the advantages of TIN- based modeling for hydrologic forecasting and process-oriented studies over complex terrain. In particular, the multi-resolution and multi-scale capabilities are encouraging for a range of applied and scientific problems in catchment hydrology.by Enrique R. Vivoni.Ph.D

    Opinion: Urban Resilience Efforts Must Consider Social And Political Forces

    Get PDF
    Environmental disasters, ranging from catastrophic floods to extreme temperatures, have caused more than 30,000 deaths per year and more than US$ 250–300 billion a year in economic losses, globally, between 1995 and 2015. Improved infrastructure and planning for extreme events is essential in urban areas, where an increasingly greater fraction of the world’s inhabitants reside. In response, international governmental and private initiatives have placed the goal of resilience at the center stage of urban planning. [For example, The 100 Resilient Cities Initiative (www.100resilientcities.org/); the Global Covenant of Mayors (https://www.compactofmayors.org/globalcovenantofmayors/); and the recent UN Habitat III (https://habitat3.org/the-new-urban-agenda)]. In addition, scientific and policy communities alike now recognize the need for “safe-to-fail” infrastructural design, and the potential role of green and blue infrastructure in mediating hydrological and climatic risks in cities

    Partición de la evapotranspiración usando isótopos estables en estudios ecohidrológicos

    Get PDF
    La ecohidrología como disciplina emergente pretende generar conocimiento para entender procesos fundamentales de los ecosistemas en función de la dinámica del ciclo hidrológico. Durante la temporada de lluvias, que coincide con las altas temperaturas en las zonas semiáridas, se desencadenan diversos procesos ecológicos relacionados con el intercambio de agua entre la superficie terrestre y la atmósfera, vía evapotranspiración (ET). A pesar de que existen diferentes metodologías para estimar ET, conocer la proporción de sus componentes, evaporación del suelo (Es) y transpiración de la vegetación (T), en escalas congruentes es todavía complicado. El presente trabajo tiene como objetivo conocer la proporción de T/ET durante un día de la temporada de lluvias en un ecosistema semiárido del noroeste de México, usando isótopos estables como trazadores de los diferentes componentes de la ET. Durante el 24 de julio de 2007 se obtuvo que la proporción T/ET fue de 59 ± 6%, pero mostró una variación importante entre la mañana y la tarde, ya que la T/ET fue de 86 ± 21% por la mañana y decayó a 46 ± 9% en la tarde. Estos resultados apuntan a que durante la mañana la vegetación se mantiene más activa, contribuyendo más a la ET vía T, en contraste con lo que se observa en la tarde. Con el uso de isótopos estables es posible separar la ET en sus componentes en nivel de ecosistema, lo cual permite el avance del conocimiento ecohidrológico

    Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment

    Get PDF
    This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern Sardinia (Italy). The examined models - CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter balance SImulation Model (WASIM) - are all distributed hydrologic models but differ greatly in their representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, the models were forced with biascorrected, downscaled outputs of four combinations of global and regional climate models in a reference (1971-2000) and future (2041-2070) period under a single emission scenario. Climate forcing variations and the structure of the hydrologic models influence the different components of the catchment response. Three water availability response variables - discharge, soil water content, and actual evapotranspiration - are analyzed. Simulation results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content at 1m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM)

    Connectivity: insights from the U.S. Long Term Ecological Research Network

    Get PDF
    Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation-funded Long-Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long-term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi-scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land-use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long-term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long-term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies
    corecore