11 research outputs found

    Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making

    Get PDF
    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions

    Increased physical activity is not enough to recover astrocytic population from dark-rearing. Synergy with multisensory enrichment is required

    Get PDF
    Elimination of sensory inputs (deprivation) modifies the properties of the sensory cortex and serves as a model for studying plasticity during postnatal development. Many studies on the effects of deprivation have been performed in the visual cortex using dark-rearing as a visual deprivation model. It induces changes in all cellular and molecular components, including astrocytes, which play an important role in the development, maintenance, and plasticity of the cortex, mediated by cytokines which have been termed angioglioneurins. When one sense is deprived, a compensatory mechanism called cross-modal plasticity increases performance in the remaining senses. Environmental enrichment is so far the best-known method to compensate sensorial deprivation. The aim of this work is to study the effects of exercise alone, and of an enriched environment combined with exercise, on astroglial population in order to observe the effects of exercise by itself, or the potential synergistic effect during the rat visual system development. Pregnant Sprague-Dawley rats were raised in one of the following rearing conditions: in total darkness and enriched environment conditions with physical exercise, and in total darkness with voluntary physical exercise. Astrocytic density was estimated by immunohistochemistry for S-100β protein and quantifications were performed in layer IV. The somatosensorial cortex barrel field was also studied as control. Our main result shows that an enriched environment combined with voluntary physical exercise manages to reverse the negative effects induced by darkness over the astroglial population of both the visual and the somatosensory cortices. On the other hand, exercise alone only produces effects upon the astroglial population of the somatosensory cortex, and less so when combined with an enriched environment

    Broad characterization of endogenous peptides in the tree shrew visual system

    Get PDF
    Endogenous neuropeptides, acting as neurotransmitters or hormones in the brain, carry out important functions including neural plasticity, metabolism and angiogenesis. Previous neuropeptide studies have focused on peptide-rich brain regions such as the striatum or hypothalamus. Here we present an investigation of peptides in the visual system, composed of brain regions that are generally less rich in peptides, with the aim of providing the first broad overview of peptides involved in mammalian visual functions. We target three important parts of the visual system: the primary visual cortex (V1), lateral geniculate nucleus (LGN) and superior colliculus (SC). Our study is performed in the tree shrew, a close relative of primates. Using a combination of data dependent acquisition and targeted LC-MS/MS based neuropeptidomics; we identified a total of 52 peptides from the tree shrew visual system. A total of 26 peptides, for example GAV and neuropeptide K were identified in the visual system for the first time. Out of the total 52 peptides, 27 peptides with high signal-to-noise-ratio (> 10) in extracted ion chromatograms (EIC) were subjected to label-free quantitation. We observed generally lower abundance of peptides in the LGN compared to V1 and SC. Consistently, a number of individual peptides showed high abundance in V1 (such as neuropeptide Y or somatostatin 28) and in SC (such as somatostatin 28 AA1-12). This study provides the first in-depth characterization of peptides in the mammalian visual system. These findings now permit the investigation of neuropeptide-regulated mechanisms of visual perception

    Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain

    Get PDF
    During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation

    Comparison of VEGF protein level of the primary visual cortex of rats reared under different visual environments (DR, DR-EE, EE, C) during the postnatal development

    No full text
    Animal primary visual cortex was homogenized and analyzed by Western blot using anti-VEGF polyclonal antibody. Actin protein was used to control the protein loaded. Molecular weight for VEGF is 23 kDa and the molecular weight for actin is 42 kDa.<p><b>Copyright information:</b></p><p>Taken from "Effects of Visual Experience on Vascular Endothelial Growth Factor Expression during the Postnatal Development of the Rat Visual Cortex"</p><p></p><p>Cerebral Cortex (New York, NY) 2007;18(7):1630-1639.</p><p>Published online 6 Nov 2007</p><p>PMCID:PMC2430152.</p><p></p

    Comparison of average measurements between DR, DR-EE, EE, and C groups in each of the periods considered

    No full text
    Horizontal axes show the age of the animals. Vertical axes show ROD VEGF over ROD actin (10×). Mean ± SEM. *Experimental group versus control significance ( < 0.05) (1-way ANOVA test with post hoc correction).<p><b>Copyright information:</b></p><p>Taken from "Effects of Visual Experience on Vascular Endothelial Growth Factor Expression during the Postnatal Development of the Rat Visual Cortex"</p><p></p><p>Cerebral Cortex (New York, NY) 2007;18(7):1630-1639.</p><p>Published online 6 Nov 2007</p><p>PMCID:PMC2430152.</p><p></p

    Comparison of average measurements between DR, DR-EE, EE, and C groups at each of the periods considered

    No full text
    Horizontal axes show the age of the animals. Vertical axes show pg VEGF of the primary visual cortex over mg primary visual cortex total protein (10×). Mean ± SEM. *Experimental group versus control significance ( < 0.05) (1-way ANOVA test with post hoc correction).<p><b>Copyright information:</b></p><p>Taken from "Effects of Visual Experience on Vascular Endothelial Growth Factor Expression during the Postnatal Development of the Rat Visual Cortex"</p><p></p><p>Cerebral Cortex (New York, NY) 2007;18(7):1630-1639.</p><p>Published online 6 Nov 2007</p><p>PMCID:PMC2430152.</p><p></p

    Angiogenic signalling pathways altered in gliomas: selection mechanisms for more aggressive neoplastic subpopulations with invasive phenotype

    Get PDF
    The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called “glioma stem cells” induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies

    Effect of intracortical vascular endothelial growth factor infusion and blockade during the critical period in the rat visual cortex

    Get PDF
    VEGF is the major angiogenic and vascular permeability factor in health and disease. Vascular development depends on function, and in sensory areas is experience-dependent. Our aim was to investigate, qualitatively and quantitatively, the effects of intracortical infusion and neutralisation of VEGF during the first days of the critical visual period, when peak levels of endogenous VEGF secretion are reached.VEGF was intracortically delivered into middle cortical layers of P18 Long–Evans rats. Another cohort received anti-VEGF. Vehicle (PBS)-infused and non-operated animals were used as controls. Various immunopathological analyses were performed: Endothelial Barrier Antigen (EBA) for the BBB integrity and GFAP for astroglial response. Vascular density was measured by Butyryl Cholinesterase Histochemistry, neuronal density by NeuN immunohistochemistry and apoptosis by TUNEL staining. VEGF levels were measured by Western Blot.Decreased vascular permeability was evoked in VEGF-infused rats whilst EBA expression remained constant, suggesting a preserved BBB function. When VEGF was blocked, tissue showed a higher degree of extravasation and a decreased number of EBA-positive vessels surrounding the injury. Lesion induced by cannula implantation annulled the normal increase in vascular density and the decrease in neuronal density during this time. VEGF rescued in part the vascular increase, and also prevented physiological and pathological neuronal death. VEGF blockade induced a higher amount of neural loss and lower astrocytic reaction.Our results support the role of VEGF as extending beyond vascularization, preventing physiological and pathological neuronal death, not only in the injured hemisphere but also in the intact one suggesting a process of transhemispheric diaschisis
    corecore