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1. Introduction 

The vascular system of every organ is composed of an afferent arterial system that 

ensures metabolic support, and an efferent venous drainage system that evacuates the 

substances produced by the organ as well as the catabolites that are generated. Both 

systems communicate via a terminal network in which the arterial capillaries anastomose 

with the venous ones. Vascular organisation depends on the structure and function of 

each organ, thus there is not a general vascular system, but an organ-specific one. The 

large blood vessels supplying the brain are the carotid and vertebral arteries, which then 

branch to form the network of pial arteries covering the surface of the brain. In the 

cerebral cortex, the pial vessels branch into smaller arteries, which enter the brain tissue 

itself and are called the penetrating arterioles. These arterioles branch into secondary 

and tertiary arterioles, until they reach the smallest vessel supplying the brain tissue, the 

capillary, which is only wide enough for one red blood cell to pass through it at a  

time. The capillaries then feed into the venules and veins, which carry the blood away 

[1]. 

Brain vascularisation is especially important due to brain metabolic peculiarities. Although 

the brain represents only 2% of the body weight and vascularisation is only 1% of brain size, 

it receives 20% of the cardiac output, 20% of total body oxygen consumption, and 25% of 

total body glucose utilization [2, 3]. As the brain lacks a glucose storage system, most of it 

has to be supported by a constant blood supply. Within the brain vascularisation, the 

vascularisation of the cerebral cortex has differential features compared not only to other 

body regions, but also to other brain areas. The two main differential features are the Blood 

Brain Barrier function and the dense capillary network.  
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2. Blood brain barrier 

The endothelium of the CNS vessels is a structure specialised in the maintenance of the 

homeostasis of the internal environment of the brain parenchyma. This function is crucial in 

the CNS, as its function requires a strict regulation of the neuronal environment, which is 

extremely sensitive to ionic and/or metabolic changes. In fact, most of the substances freely 

available in blood from daily food intake that are constantly metabolised and excreted, are 

potentially neurotoxic [4]. This function is known as the Blood Brain Barrier, and was first 

described in 1885 by Paul Ehrlich, who found that soluble dyes injected into the system 

stained all organs but the brain and the spinal cord [5]. 

The Blood Brain Barrier is the set of mechanisms (physical and metabolic) that regulate the 

passage of compounds from blood to brain, allowing the regulation of the internal 

environment of the CNS with independence of fluctuations in blood composition. These 

mechanisms include, among others, the enzymatic systems that transform some compounds 

during their passage through the endothelium, as well as the specific transporters of some 

substances, such as glucose or aminoacids. Bigger molecules, such as insulin, use exocytosis 

systems mediated by receptors. Some of these enzymatic mechanisms have been used to 

quantify vascular distribution, e.g., butyryl cholinesterase histochemistry [6], alkaline 

phosphatase histochemistry [7], LEA lectin histochemistry [8-10] and 

immunohistochemistry against antigens such as glucose transporter-1 (GluT-1) [11], 

PECAM [12], RECA-1 [13] and the endothelial barrier antigen (EBA) [11, 14-18]. 

Among the cellular components of the BBB, we could mention the following: 

a. Endothelial cells. The cortical endothelium is formed by a layer of endothelial cells with 

a higher mitochondrial component, almost complete absence of pinocytic activity, 

absence of fenestrations and presence of interendothelial junctions [19, 20]. 

b.  Pericytes. Joined to the abluminal membrane of the endothelium, pericytes are 

included in the same basal membrane as the endothelium. The pericyte is a cell of 

heterogeneous origin that is related to macrophages, muscle cells, etc. Despite the fact 

that they have been largely neglected, recent studies show that they play a relevant role 

in angiogenesis and in the BBB function, by, among other mechanisms, inhibiting 

apoptosis of endothelial cells. Apart from their vascular role, recent studies have 

demonstrated a crucial role of pericytes in the formation of the glial scars produced 

after brain injuries, thus linking the maintenance of the Blood Brain Barrier with 

scarring and tissue repair, a role that has long been attributed to astrocytes [21]. 

c. Astrocytes. These play a relevant role in the dual nature of the BBB, physical and 

metabolic. On the one hand, their prolongations ensheathing the endothelial wall 

(astrocytic endfeet) are closely related to the basal membrane. Astrocytes induce several 

metabolic BBB properties, such as the enzymatic activity of the capillary wall, the 

uptake of glucose and the establishment of tight junctions. In general, astrocytes play a 

key role in the induction, expression and maintenance of the BBB. Although astrocytes 

are implicated in flow regulation and microvascular permeability by elevating calcium 
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levels in endothelial intervention, they are less involved than expected in the structural 

properties of the BBB [4]. 

d. Extracellular matrix. Apart from the afore-mentioned cells and neurons, that also 

regulate blood flow to cope with energy requirements and that even regulate vascular 

permeability, the extracellular matrix plays a key role in the interaction with vascular 

permeability, even regulating the expression of proteins that constitute the TJ of the 

BBB. On the other hand, the ECM has to be digested in order to allow angiogenesis, 

thus liberating non-soluble VEGF. This function is performed by the matrix 

metalloproteases [22]. 

Due to the cellular heterogeneity that constitutes the BBB, all the elements can be described 

as a neurogliovascular unit, where all elements are interrelated, as can be seen in 

pathological processes such as Alzheimer’s, Parkinson’s or stroke, where all elements are 

implicated [4, 23].  

Among the structural elements of the BBB, tight junctions play a crucial role in the control of 

the paracellular diffusion of blood compounds to brain parenchyma. Tight Junctions coexist 

with other junction structures, such as belt desmosomes and gap junctions; nevertheless, 

tight junctions are still the main ones [23]. 

The proteins that constitute the tight junctions share a common cytoplasmatic location, and 

are linked to the actin cytoskeleton (ZO-1 and 2, cingulin, AF-6 and 7H6). The 

transmembrane proteins are JAM-1, occludin and claudin [24]. Actin plays an even greater 

role than TJ proteins in the maintenance of BBB integrity [22].  

Although the development of cortical vascularisation is closely related to the development 

of the cortical function, in previous work we have demonstrated that despite the effects of 

sensorial deprivation on the development of the vascularisation of the visual cortex, the 

maturation of the BBB is not related to the functional maturation of the cortex, as neither 

visual deprivation nor environmental enrichment induced changes in the maturation of 

early and late markers of barrier maturation [14]. As most of the barrier structural and 

functional markers are fully developed prior to the beginning of the critical period, 

experience-mediated modifications do not appear to influence barrier maturation. 

3. Capillary network 

On the other hand, 90% of the cortical vascularisation is constituted by a fine capillary 

network that spreads all over the cortex and whose density is related to local neuronal 

activity. This network was described by Galen, who called it rete mirabile [25, 26]. 

Estimations suggest that the human brain contains up to 100 billion vessels, suggesting a 

ratio of one vessel per neuron [3]. In prior work, we have demonstrated that this 

relationship is maintained in the visual cortex despite deprivation of visual inputs. Indeed, 

both the number of vessels per neuron and the vascular surface per neuron maintain similar 

values when comparing normal and visually deprived rats [27]. In contrast, visual 

environmental enrichment does increase the ratio of vessels per neuron in response to the 

increased demand [28, 29]. 
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The vascular system of the rat cerebral cortex is organised from the penetrating vessels 

perpendicular to the surface, emanating from the leptomeningeal vascular system. These 

vascular trunks branch, forming the capillary network that is the essential nutritional sector 

of the cortex, although metabolic exchange also takes place in the microcirculation sectors 

preceding the capillary network in small calibre arterioles [6]. 

When determining the three types of intracerebral vessels, although the vessel size is not a 

firm criterion for differentiating between capillary venules and arterioles, in general it can 

be established that the arterioles are vessels of 10 to 100 microns gauge. Arterioles with a 

caliber between 50 and 100 microns are called large arterioles, and arterioles smaller than 50 

microns are called terminals. The capillaries are vessels under 10 microns, while venules are 

vessels of about 30 microns in diameter. 

The main differences between these two types of vessel are in the structure of the wall: 

 Arterioles lack a complete internal elastic membrane despite having a middle layer 

consisting of three layers of smooth muscle. A distinctive feature of the arteriolar wall 

structure is the adventitia, much thinner in cerebral arterioles than in the arterioles of 

the rest of the body, becoming discontinuous in some points, thus allowing the 

exchange of nutrients. 

 Venules lack a distinct muscular middle layer. In its place is a layer of periendotelial 

cells. Periendotelial cells are a cell type that does not correspond clearly to smooth 

muscle cells or to pericytes, and that play a phagocytic function. The endothelium is 

structurally similar to the capillary structure. 

 The capillary wall thickness is 4 to 10 times lower than the arteriolar wall thickness. The 

capillary wall has no muscle layer and is in close relationship with glia, physically 

structuring the blood brain barrier. 

The study of the vascular system of the cerebral cortex requires the establishment of the 

topographical relationships between neurons, and blood vessels must provide a sufficient 

supply. Vascular density is closely related to local metabolic activity and oxygen 

consumption of different cortical regions. In areas with increased activity, characterised by 

an increase in mitochondrial volume density and increased local consumption of glucose, 

there was an increase in capillary density [2]. 

The differences in capillary density between different areas are mainly due to neuronal 

density and activity, and more specifically due to synaptic density. Being structurally 

similar, the differences will be based solely on the degree of activity. Furthermore, the 

development of the vascular bed is the result and runs parallel to the development of the 

cortex. Thus, in animal species in which the cerebral cortex is not fully mature at birth, 

there is little cortical vascularisation, and as the cortex matures, it develops its vascular 

architecture. This does not happen in lower species that are born relatively mature in 

which we see a vascular network similar to the adult animal brain. Similarly, 

phylogenetically older regions such as the entorhinal cortex have a more primitive 

vascular structure [30]. 
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4. Development of the vascularisation of the visual cortex 

The development of new blood vessels can occur via two mechanisms: vasculogenesis and 

angiogenesis. Vasculogenesis is the development of new vessels from differentiated 

endothelial cells in situ. Angiogenesis is the development of capillaries from preexisting 

vessels and is the way that cerebral vessels develop. Angiogenesis is a process that 

coordinates the precise timing and location of all the cells belonging to the 

NeuroGlioVascular unit to form a hierarchical vascular network with CNS specifications, 

including BBB function, reciprocal interactions between neurons, glia and pericytes and a 

vascular niche for neural stem cells [31]. The angiogenic process starts when one endothelial 

cell, in response to the VEGF secreted following local hypoxia, differentiates into a tip cell 

that advances according to the VEGF signal. The adjacent endothelial cells are destined to 

become stalk cells that follow the tip cell, providing a lumenized endothelial cell chain. The 

signal to inhibit tip cell differentiation and to become stalk cell is mediated by the Notch 

pathway [32, 33]. This process is functionally similar to axon growth cones [34, 35]. 

The development of intracortical vascularisation starts at 12 days post coitum with radially 

penetrating stem vessels following the pattern of neural tube growth, and is completed 

when these vessels form new cortical branches terminating in different cellular layers with 

‘en bouquet’ [36] terminations. This is the vascular pattern of the mature neocortex. 

 The first draft of brain vessels is formed starting from where the aortic arches approach the 

ventral neural tube to form a primary vascular plexus. Vessels from the primary plexus 

reach the vesicles developing in the telencephalic basolateral surface, and vascular buds 

penetrate perpendicularly to the walls of the hemisphere [3, 37]. The development of the 

cerebral vasculature is divided into two stages, one extracerebral and the other intracerebral. 

a. Extracerebral vascularisation (leptomeningeal) 

The arterial and venous vessels that cover the entire cerebral cortex are formed from 

undifferentiated capillary plexus. This perineural vascular system ends when the 

development of intracerebral vascularisation finishes. At first, the density of leptomeningeal 

arteries decreases, and then the veins, which indicates that the venous system reaches its 

final pattern after the arterial [36]. 

b. Intracerebral vascularisation 

The vascularisation of the cerebral cortex begins with the development of vascular trunks 

penetrating radially, perpendicular to the cortical surface. The development of these early 

intracerebral vessels begins in the early days of embryonic development and is completed 

during postnatal life [38]. 

The first vascular sprouts penetrate the cortex before the development of the cortical plate, 

so that the first vessels reach the ventricular zone perpendicularly opposite the 

leptomeningeal plexus. The earliest vessels that arise during development penetrate the 

cortical plate throughout its depth. This is reflected in the vascular structure of the adult 

cortex, where we can distinguish the radial trunks originated at first and going through all 
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cortical layers without collateral branches. During development of the cortex, the vascular 

leptomeningeal system issues new branches that penetrate the cortical plate, covering a 

territory that corresponds to their age so that the first vessels supply the deeper layers and 

the later ones supply the outermost layers. In the rat, from the second week of postnatal life 

there is no new perpendicular growth that enters the cortex from the leptomeningeal 

vascular system. The volume and surface area of the cortex continue to increase, so the 

vessel density decreases in proportion, penetrating perpendicularly to the cortical surface. 

The cerebral cortex, in addition to thickening, undergoes a three-dimensional growth 

process accompanied by vascular arborization involving penetrating vessels. As was the 

case with the increase in thickness, the most ancient vessels provide greater horizontal 

branches due to the fact that older vessels occupy a larger area. 

After maturation of the capillary network there is no budding of new vascular branches, 

indicating that the process of budding of new vascular branches ends when the vascular 

wall has fully developed. During the first phase of vascular development, a basic pattern is 

provided to suit the needs of each cortical area, showing specific regional differences in 

relation to the further development of different areas. During the second phase of 

vascularisation, a large increase in the vascular bed density occurs which corresponds to a 

large increase of the capillary surface closely associated with increased metabolic demands 

of the tissue. Between 8 and 20 days of postnatal life the microvascular endothelial cells 

proliferate rapidly. It is during this period that virtually all vascular branches form. The 

mitotic activity of endothelial cells drops sharply during the third week of postnatal life, as 

can be verified by tritiated thymidine incorporation into endothelial cells [36]. 

The third phase of vascular development is the elongation of existing branches. Originally, 

successive vascular branches are established, and then the vessels grow in length to cover 

the whole territory they serve. This elongation stage of pre-existing capillaries extends from 

day 20 until adulthood. This is the physiological pattern of development. In animals kept 

under normal conditions the definitive pattern of vascularisation culminates in the third 

week of postnatal life. Subsequent changes in transient local metabolic demands are 

supplied by local flow changes, but there are special circumstances that occur in which 

definitive increases in metabolic demand are offset by extending or adapting the normal 

pattern of development, as happens in adaptation to altitude hypoxia [39]. 

The development of the vascularisation of the visual cortex has one main specificity in rats, 

as the first phases of cortical development occur prior to eye opening, and thus are not 

experience-mediated. So, the experience-mediated vascular development happens during 

the so-called critical period. Sensory modifications during the early critical period result in 

substantial plasticity and are a crucial factor in establishing the mature circuitry [hooks]. 

This time window of postnatal life is specific for each brain area, and is experience-

mediated. The critical period in the rat visual system is located between the 3rd and 5th 

postnatal weeks with a peak at the 4th [40]. Previously, we have shown that vascular 

density is closely related to neuronal activity, and by increasing and decreasing visual 

experience, we have found that the peak of VEGF expression is also at the 4th postnatal 

week [41], corresponding to the activity peak. 
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Figure 1. Schematic representation and histochemical sections of the development of the 

vascularisation of the visual cortex: a) first phase where vascular sprouts penetrate the cortex; b) during 

the second phase an increase in the vascular bed occurs; c) in the third phase the vessels grow in length 

and cover the whole territory they serve; d,e,f) show visual cortex vascularisation by 

butyrylcholinesterase histochemistry during these phases at P0 (first phase), P14 (second phase) and 

P60 (third phase), when the rats reach adulthood. 



 
Visual Cortex – Current Status and Perspectives 272 

Thus, during the first two weeks of postnatal development, most of the vessels are the 

perpendicularly penetrating vessels, and this terminates at the end of the second postnatal 

week, just at the opening of the eyes. At this point, the adult pattern starts, characterised 

by a dense capillary network that is thicker in the most active areas, such as layer IV [6, 

30]. The influence of experience can be demonstrated in visually-deprived dark-reared 

rats, that have an immature vascular pattern characterised by a higher prevalence of 

perpendicularly penetrant trunks and a much sparser vascular network. In contrast, 

environmental enrichment induces just the opposite, a faster development of the mature 

pattern and a higher vascular density [14]. These changes occur in parallel to the 

development of the rest of the elements of the neurogliovascular unit, and we have 

demonstrated that the development of the astroglial population in layer IV of the visual 

cortex mirrors the vascular behaviour [42, 43]. In a similar way, vascular density is also 

higher in layer IV of the auditory cortex and lower in layer I [30]. On the other hand, we 

have recently described upregulated neuropeptides in the visual system, and as some of 

them have also strong angiogenic properties, and as neuropeptides are among the main 

regulators of the critical period in the visual cortex along with angioglioneurins, this 

finding is also consistent with the common patterns for neural and vascular development 

[44]. 

There is a direct relationship between vascular density and metabolic activity. This is 

evidenced by the correlation between vascular density and mitochondria. Local capillary 

density, local utilization of glucose and local cerebral blood flow [45, 46] have also been 

found to be correlated. The relationship between the increase in neural activity and the 

increase in perfusion to supply this requirement is the so-called neurovascular coupling, 

that is the basis of modern neuroimaging techniques and that has been recently described as 

neurogenic instead of metabolic [47].  

5. Angioglioneurins 

Neovascularisation is mediated by a variety of cytokines, including Vascular Endothelial 

Growth Factor (VEGF). VEGF is a hypoxia-inducible secreted homodimeric glycoprotein of 

45,000 daltons that plays a major role in developmental [48-51] and pathological 

angiogenesis [52-57]. Five major isoforms of human VEGF exist, of which VEGF165 is the 

predominant one in most mammals. However, VEGF164 is shorter by one amino acid in 

rodents. VEGF isoforms are differentially expressed in disease, suggesting differences 

between pathological entities in the mechanisms of VEGF up-regulation as well as in their 

employment of distinct isoforms for neovascularisation [58]. The main receptors for the 

Vascular Endothelial Growth Factor (VEGF) family are the feline sarcoma virus-like tyrosine 

kinase receptor (Flt-1 or VEGFR-1) and the fetal liver kinase receptor (Flk-1) or VEGFR-2, 

also known as KDR [49, 51, 59, 60]. 

VEGFR-2 plays a critical role in some permeability-enhancing effects of VEGF [54]. In 

pathological conditions, VEGFR-2 mediates an antiapoptotic effect via Phosphoinositide 

3-kinase (PI3K)-dependent signalling pathways which promote the survival of endothelial 
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cells induced by VEGF [61-63] and is related to the blood-brain barrier (BBB) opening in 

brain injury [54, 64, 65]. A neuroprotective role for VEGF via VEGFR-2 has also been 

described [59, 66-68], which occurs via the PI3k/Akt and the mitogen-activated protein 

kinase/ERK kinase/extracellular signal-regulated protein kinase (MEK/ERK) pathways 

[69, 70]. 

But despite VEGF being the main angiogenic molecule, there are others that also play a 

multicellular role. Molecules that affect both neural and vascular cell processes have 

recently been termed angioneurins [71]. Angioneurins include molecules first described as 

vascular growth factors, such as Vascular Endothelial Growth Factor (VEGF), molecules 

first described as neurotrophins such as Brain-Derived Neurotrophic Factor (BDNF), and 

other factors such as Insulin-Like Growth Factor-1 (IGF-I) or Erythropoietin (EPO). 

Independently of their origin, all angioneurins share a common action on vascular and 

neuronal function. As most of these molecules also have effects on the third component of 

the neurogliovascular unit, the glia, we propose the term angioglioneurins to describe 

them [39, 72]. 

 

Figure 2. Schematic representation of referred angioglioneurins and their receptors. Some 

angioglioneurins were originally discovered through their angiogenic effects and then later found to 

also have neuroprotective activity (for example, vascular endothelial growth factor (VEGF)); some 

neurotrophic factors were originally discovered through their neuronal effects and then later found to 

also have angiogenic activity (for example, brain derived neurotrophic factor (BDNF)); others are more 

pleiotropic but still have relevant neurovascular activities, being involved in both angiogenesis and 

neuroprotection (for example, insulin-like growth factor 1 (IGF1) and erythropoietin (EPO)) (modified 

from Zacchigna et al., Nat Rev Neurosci; 9(3):169-81. Review). 
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6. Conclusions 

The brain is highly vascularised, containing a very intricate network of capillaries (nearly 

every brain cell is located within 20 μm of a capillary). The endothelial cells that form the 

brain capillaries are sealed together by tight junctions, and have no fenestrations and very 

low pinocytosis. This combination of features creates the BBB, which is both a physical and 

enzymatic barrier. 

Angiogenesis is one of the main adaptive mechanisms of brain microcirculation to changing 

needs of the CNS, as happens in the development of the visual cortex under the influence of 

visual activity, mainly during the critical period. 

The nervous system needs a stable internal environment, which is created by the Blood 

Brain Barrier (BBB). The BBB function is related to structural and functional features of the 

vascular endothelium. Both the development of angioarchitecture and the functional 

maturation of the BBB occur postnatally and are regulated by tissue microenvironment and 

external environment. The development of the vascular tree, the acquisition of functional 

competence by the BBB and the induction and modulation of neoangiogenesis are closely 

dependent on the changes in metabolic demand induced by functional modifications 

(increases or decreases of stimuli). 

The vascular network plays a crucial role in development and function of the CNS. It adapts 

to specific changes of metabolic demand and local flow modifications. However, if these 

changes become permanent, the supply is ensured by neoangiogenesis. Angiogenic, 

neurotrophic and neuroprotective factors participate in the development and maintenance 

of vascular, astroglial and neuronal structures, suggesting that the neurogliovascular unit 

preserves brain integrity. The improvement of the neurogliovascular unit by mechanisms 

such as the direct administration or the indirect stimulation of secretion of angioglioneurins 

could be an efficient strategy in brain diseases.  

Author details 

Enrike G. Argandoña 

Department of Medicine, Unit of Anatomy, University of Fribourg, Fribourg, Switzerland 

Harkaitz Bengoetxea, Naiara Ortuzar, Susana Bulnes,  

Irantzu Rico-Barrio and José Vicente Lafuente 

Laboratory of Experimental Neuroscience LaNCE, Department of Neuroscience,  

Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU),  

Sarriena Auzoa, Leioa, Spain 

7. References 

[1] MacVicar BA, Salter MW (2006) Neuroscience: controlled capillaries. Nature. 

443(7112):642-643. 



 
Experience Mediated Development of the Visual Cortex Vascularization 275 

[2] Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on 

astrocyte-neuron metabolic cooperation. Cell Metab. 14(6):724-738. 

[3] Quaegebeur A, Lange C, Carmeliet P (2011) The neurovascular link in health and 

disease: molecular mechanisms and therapeutic implications. Neuron. 71(3):406-424. 

[4] Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, et al. (2011) Engaging 

neuroscience to advance translational research in brain barrier biology. Nat Rev 

Neurosci. 12(3):169-182. 

[5] Ehrlich P (1885) Das sauerstoff-bedurfnis des organismus. Eine farbenanalytische studie 

Hirschwald, Berlin. 

[6] Argandona EG, Lafuente JV (1996) Effects of dark-rearing on the vascularization of the 

developmental rat visual cortex. Brain Res. 732(1-2):43-51. 

[7] Fonta C, Imbert M (2002) Vascularization in the primate visual cortex during 

development. Cereb Cortex. 12(2):199-211. 

[8] Ezaki T, Baluk P, Thurston G, La Barbara A, Woo C, McDonald DM (2001) Time course 

of endothelial cell proliferation and microvascular remodeling in chronic inflammation. 

Am J Pathol. 158(6):2043-2055. 

[9] Mazzetti S, Librizzi L, Frigerio S, de Curtis M, Vitellaro-Zuccarello L (2004) Molecular 

anatomy of the cerebral microvessels in the isolated guinea-pig brain. Brain Res. 

999(1):81-90. 

[10] Thurston G, Murphy TJ, Baluk P, Lindsey JR, McDonald DM (1998) Angiogenesis in 

mice with chronic airway inflammation: strain-dependent differences. Am J Pathol. 

153(4):1099-1112. 

[11] Krum JM (1996) Effect of astroglial degeneration on neonatal blood-brain barrier 

marker expression. Exp Neurol. 142(1):29-35. 

[12] Ogunshola OO, Stewart WB, Mihalcik V, Solli T, Madri JA, Ment LR (2000) Neuronal 

VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain 

Res Dev Brain Res. 119(1):139-153. 

[13] Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal 

neurogenesis. J Comp Neurol. 425(4):479-494. 

[14] Argandona EG, Bengoetxea H, Lafuente JV (2005) Lack of experience-mediated 

differences in the immunohistochemical expression of blood-brain barrier markers 

(EBA and GluT-1) during the postnatal development of the rat visual cortex. Brain Res 

Dev Brain Res. 156(2):158-166. 

[15] Cassella JP, Lawrenson JG, Allt G, Firth JA (1996) Ontogeny of four blood-brain barrier 

markers: an immunocytochemical comparison of pial and cerebral cortical microvessels. 

J Anat. 189 ( Pt 2):407-415. 

[16] Lin B, Ginsberg MD (2000) Quantitative assessment of the normal cerebral 

microvasculature by endothelial barrier antigen (EBA) immunohistochemistry: 

application to focal cerebral ischemia. Brain Res. 865(2):237-244. 

[17] Norsted E, Gomuc B, Meister B (2008) Protein components of the blood-brain barrier 

(BBB) in the mediobasal hypothalamus. J Chem Neuroanat. 36(2):107-121. 

[18] Orte C, Lawrenson JG, Finn TM, Reid AR, Allt G (1999) A comparison of blood-brain 

barrier and blood-nerve barrier endothelial cell markers. Anat Embryol (Berl). 

199(6):509-517. 



 
Visual Cortex – Current Status and Perspectives 276 

[19] Gomez-Gonzalez B, Escobar A (2009) Altered functional development of the blood-

brain barrier after early life stress in the rat. Brain Res Bull. 79(6):376-387. 

[20] Gomez-Gonzalez B, Larios HM, Escobar A (2011) Increased transvascular transport of 

WGA-peroxidase after chronic perinatal stress in the hippocampal microvasculature of 

the rat. Int J Dev Neurosci. 29(8):839-846. 

[21] Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J (2011) A pericyte 

origin of spinal cord scar tissue. Science. 333(6039):238-242. 

[22] Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and 

disease. Pharmacol Rev. 57(2):173-185. 

[23] Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the 

blood-brain barrier. Nat Rev Neurosci. 7(1):41-53. 

[24] Liebner S, Cavallaro U, Dejana E (2006) The multiple languages of endothelial cell-to-

cell communication. Arterioscler Thromb Vasc Biol. 26(7):1431-1438. 

[25] Prioreschi P (1996) Galenicae Quaestiones Disputatae Duae: rete mirabile and 

pulmonary circulation. Vesalius. 2(2):67-78. 

[26] Viale G (2006) The rete mirabile of the cranial base: a millenary legend. Neurosurgery. 

58(6):1198-1208; discussion 1198-1208. 

[27] Argandona EG, Lafuente JV (2000) Influence of visual experience deprivation on the 

postnatal development of the microvascular bed in layer IV of the rat visual cortex. 

Brain Res. 855(1):137-142. 

[28] Beauquis J, Roig P, De Nicola AF, Saravia F (2010) Short-term environmental 

enrichment enhances adult neurogenesis, vascular network and dendritic complexity in 

the hippocampus of type 1 diabetic mice. PLoS One. 5(11):e13993. 

[29] Black JE, Sirevaag AM, Greenough WT (1987) Complex experience promotes capillary 

formation in young rat visual cortex. Neurosci Lett. 83(3):351-355. 

[30] Michaloudi H, Grivas I, Batzios C, Chiotelli M, Papadopoulos GC (2005) Areal and 

laminar variations in the vascularity of the visual, auditory, and entorhinal cortices of 

the developing rat brain. Brain Res Dev Brain Res. 155(1):60-70. 

[31] Mancuso MR, Kuhnert F, Kuo CJ (2008) Developmental angiogenesis of the central 

nervous system. Lymphat Res Biol. 6(3-4):173-180. 

[32] Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for 

cancer and other angiogenic diseases. Nat Rev Drug Discov. 10(6):417-427. 

[33] Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of 

angiogenesis. Nature. 473(7347):298-307. 

[34] Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al. 

(2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell 

Biol. 161(6):1163-1177. 

[35] Tam SJ, Watts RJ (2010) Connecting vascular and nervous system development: 

angiogenesis and the blood-brain barrier. Annu Rev Neurosci. 33:379-408. 

[36] Bar T (1980) The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol. 

59:I-VI,1-62. 

[37] Marin-Padilla M, Knopman DS (2011) Developmental aspects of the intracerebral 

microvasculature and perivascular spaces: insights into brain response to late-life 

diseases. J Neuropathol Exp Neurol. 70(12):1060-1069. 

[38] Risau W (1997) Mechanisms of angiogenesis. Nature. 386(6626):671-674. 



 
Experience Mediated Development of the Visual Cortex Vascularization 277 

[39] Argandona EG, Bengoetxea H, Ortuzar N, Bulnes S, Rico-Barrio I, Lafuente JV (2012) 

Vascular endothelial growth factor: adaptive changes in the neuroglialvascular unit. 

Curr Neurovasc Res. 9(1):72-81. 

[40] Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal 

development of the rat primary visual cortex and the role of visual experience: dark 

rearing and monocular deprivation. Vision Res. 34(6):709-720. 

[41] Bengoetxea H, Argandona EG, Lafuente JV (2008) Effects of visual experience on 

vascular endothelial growth factor expression during the postnatal development of the 

rat visual cortex. Cereb Cortex. 18(7):1630-1639. 

[42] Argandona EG, Bengoetxea H, Lafuente JV (2009) Physical exercise is required for 

environmental enrichment to offset the quantitative effects of dark-rearing on the S-

100beta astrocytic density in the rat visual cortex. J Anat. 215(2):132-140. 

[43] Argandoña EG, Rossi ML, Lafuente JV (2003) Visual deprivation effects on the s100beta 

positive astrocytic population in the developing rat visual cortex: a quantitative study. 

Brain Res Dev Brain Res. 141(1-2):63-69. 

[44] Ranc V, Petruzziello F, Kretz R, Argandoña EG, Zhang X, Rainer G (2012) Broad 

characterization of endogenous peptides in the tree shrew visual system. J Proteomics. 

[45] Busija DW (1994) Cerebral circulation of the fetus and newborn. RD Bevan, JA Bevan 

(Eds), The Human Brain Circulation, Humana Press, Totowa, NJ.259–270. 

[46] Toga AW (1987) The metabolic consequence of visual deprivation in the rat. Brain Res. 

465(1-2):209-217. 

[47] Kennerley AJ, Harris S, Bruyns-Haylett M, Boorman L, Zheng Y, Jones M, et al. (2012) 

Early and late stimulus-evoked cortical hemodynamic responses provide insight into 

the neurogenic nature of neurovascular coupling. J Cereb Blood Flow Metab. 32(3):468-

480. 

[48] Ferrara N, Bunting S (1996) Vascular endothelial growth factor, a specific regulator of 

angiogenesis. Curr Opin Nephrol Hypertens. 5(1):35-44. 

[49] Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. 

Endocr Rev. 18(1):4-25. 

[50] Ferrara N, Gerber HP (2001) The role of vascular endothelial growth factor in 

angiogenesis. Acta Haematol. 106(4):148-156. 

[51] Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat 

Med. 9(6):669-676. 

[52] Dvorak HF (2000) VPF/VEGF and the angiogenic response. Semin Perinatol. 24(1):75-78. 

[53] Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature. 

438(7070):954-959. 

[54] Lafuente JV, Argandoña EG, Mitre B (2006) VEGFR-2 expression in brain injury: its 

distribution related to brain-blood barrier markers. J Neural Transm. 113(4):487-496. 

[55] Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, et al. (2000) Hypoxia-

induced vascular endothelial growth factor expression precedes neovascularization 

after cerebral ischemia. Am J Pathol. 156(3):965-976. 

[56] Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a 

potential tumour angiogenesis factor in human gliomas in vivo. Nature. 359(6398):845-

848. 



 
Visual Cortex – Current Status and Perspectives 278 

[57] Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P (2009) Role and 

therapeutic potential of VEGF in the nervous system. Physiol Rev. 89(2):607-648. 

[58] Nishikawa R, Cheng SY, Nagashima R, Huang HJ, Cavenee WK, Matsutani M (1998) 

Expression of vascular endothelial growth factor in human brain tumors. Acta 

Neuropathol. 96(5):453-462. 

[59] Moser KV, Humpel C (2005) Vascular endothelial growth factor counteracts NMDA-

induced cell death of adult cholinergic neurons in rat basal nucleus of Meynert. Brain 

Res Bull. 65(2):125-131. 

[60] Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth 

factor (VEGF) and their receptors. J Cell Sci. 114(Pt 5):853-865. 

[61] Geretti E, Shimizu A, Klagsbrun M (2008) Neuropilin structure governs VEGF and 

semaphorin binding and regulates angiogenesis. Angiogenesis. 11(1):31-39. 

[62] Jin K, Mao XO, Batteur SP, McEachron E, Leahy A, Greenberg DA (2001) Caspase-3 and 

the regulation of hypoxic neuronal death by vascular endothelial growth factor. 

Neuroscience. 108(2):351-358. 

[63] Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: direct 

neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci U S A. 97(18):10242-

10247. 

[64] Fischer S, Wobben M, Marti HH, Renz D, Schaper W (2002) Hypoxia-induced 

hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated 

changes in the expression of zonula occludens-1. Microvasc Res. 63(1):70-80. 

[65] Ortuzar N, Argandoña EG, Bengoetxea H, Leis O, Bulnes S, Lafuente JV (2010) Effects 

of VEGF administration or neutralization on the BBB of developing rat brain. Acta 

Neurochir Suppl. 106:55-59. 

[66] Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, et al. (2001) 

Deletion of the hypoxia-response element in the vascular endothelial growth factor 

promoter causes motor neuron degeneration. Nat Genet. 28(2):131-138. 

[67] Ortuzar N, Argandoña EG, Bengoetxea H, Lafuente JV (2011) Combination of 

intracortically administered VEGF and environmental enrichment enhances brain 

protection in developing rats. J Neural Transm. 118(1):135-144. 

[68] Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific 

angiogenic factor, now implicated in neuroprotection. Bioessays. 26(9):943-954. 

[69] Kaya D, Gursoy-Ozdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T (2005) VEGF 

protects brain against focal ischemia without increasing blood--brain permeability 

when administered intracerebroventricularly. J Cereb Blood Flow Metab. 25(9):1111-

1118. 

[70] Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB (2002) 

Neuroprotection by hypoxic preconditioning requires sequential activation of vascular 

endothelial growth factor receptor and Akt. J Neurosci. 22(15):6401-6407. 

[71] Zacchigna S, Lambrechts D, Carmeliet P (2008) Neurovascular signalling defects in 

neurodegeneration. Nat Rev Neurosci. 9(3):169-181. 

[72] Lafuente JV, Ortuzar N, Bengoetxea H, Bulnes S, Argandoña EG (2012) Vascular 

Endothelial Growth Factor and Other Angioglioneurins: Key Molecules in Brain 

Development and Restoration. International Review of Neurobiology. 102. 


