29 research outputs found

    Correction: Assessment of angle velocity in girls with adolescent idiopathic scoliosis

    Get PDF
    Correction to Escalada F, Marco E, Duarte E, Muniesa JM, Boza R, Tejero M, Cáceres E. Assessment of angle velocity in girls with adolescent idiopathic scoliosis. Scoliosis 2009; 4:20

    MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales

    Get PDF
    Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity, which requires moving away from broadly defined functional types. Different approaches have been adopted in the last years to incorporate a trait-based perspective into modeling exercises. A common parametrization strategy involves using trait data to represent functional variation between individuals while discarding taxonomic identity. However, this strategy ignores the phylogenetic signal of trait variation and cannot be employed when predictions for specific taxa are needed, such as in applications to inform forest management planning. An alternative strategy involves adapting the taxonomic resolution of model entities to that of the data source employed for large-scale initialization and estimating functional parameters from available plant trait databases, adopting diverse solutions for missing data and non-observable parameters. Here we report the advantages and limitations of this second strategy according to our experience in the development of MEDFATE (version 2.9.3), a novel cohort-based and trait-enabled model of forest dynamics, for its application over a region in the western Mediterranean Basin. First, 217 taxonomic entities were defined according to woody species codes of the Spanish National Forest Inventory. While forest inventory records were used to obtain some empirical parameter estimates, a large proportion of physiological, morphological, and anatomical parameters were matched to measured plant traits, with estimates extracted from multiple databases and averaged at the required taxonomic level. Estimates for non-observable key parameters were obtained using meta-modeling and calibration exercises. Missing values were addressed using imputation procedures based on trait covariation, taxonomic averages or both. The model properly simulated observed historical changes in basal area, with a performance similar to an empirical model trained for the same region. While strong efforts are still required to parameterize trait-enabled models for multiple taxa, and to incorporate intra-specific trait variability, estimation procedures such as those presented here can be progressively refined, transferred to other regions or models and iterated following data source changes by employing automated workflows. We advocate for the adoption of trait-enabled and population-structured models for regional-level projections of forest function and dynamics

    Assessment of angle velocity in girls with adolescent idiopathic scoliosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although it has been demonstrated that the peak height velocity (PHV) is a predictive factor of progression in adolescent idiopathic scoliosis (AIS), little is known about the usefulness of angle progression in clinical practice. The purpose of this study was to establish a relationship between height and angle velocities, as well as to determine if peak angle velocity (PAV) occurs at the same time than PHV.</p> <p>Methods</p> <p>A retrospective study of a cohort of girls with idiopathic scoliotic curves greater than 10°. Data of 132 girls who participated in a previous retrospective study about growth in AIS were used to calculate height and angle velocities. Relationship between height and angle velocities was estimated by the use of a Linear Mixed Model.</p> <p>Results</p> <p>PHV and PAV take place simultaneously 1 year before menarche in progressive curves managed with a brace in AIS. Changes in angle velocity are influenced by changes in height growth velocity, in such a way that as from 6 months post-menarche, height growth velocity in this group of girls estimates curve progression velocity (β-coefficient -0.88, p = 0.04).</p> <p>Conclusion</p> <p>As from 6 months post-menarche, there is an inverse relationship between height velocity and curve progression in the group of AIS girls with progressive curves managed with a brace. Because height velocity is decreasing from 1 year before menarche, this finding corroborates that at the end of puberty, there is still a risk of progression in this group of girls despite bracing. The assessment of both height and angle velocity might be useful in clinical practice at the time of assessing brace effectiveness and how long bracing has to be indicated.</p

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    {'en_US': '"From fear to resilience". Phenomenological study on the impact of the COVID-19 pandemic on caregivers of dependent hemodialysis patients', 'es_ES': '“Del miedo a la resiliencia”. Estudio fenomenológico sobre el impacto de la pandemia por COVID-19 en cuidadoras de pacientes dependientes en hemodiálisis'}

    Get PDF
    Objetivo: profundizar en el conocimiento sobre las vivencias y el soporte percibido en cuidadoras primarias que atendieron a pacientes dependientes en tratamiento con hemodiálisis durante el periodo de pandemia por COVID-19 en la ciudad de Madrid. Material y Método: estudio transversal efectuado con diez cuidadoras primarias de pacientes en tratamiento de hemodiálisis que habían proporcionado cuidados durante el periodo de marzo 2020 a junio 2021. La recolección de los datos se realizó mediante entrevistas semiestructuradas a distancia hasta conseguir la saturación de las unidades de significado. Se realizó un análisis cualitativo fenomenológico mediante el método de siete pasos de Colaizzi. Resultados: del análisis de los discursos emergieron dimensiones asociadas a diferentes subcategorías: miedo inicial sobre la enfermedad, pérdida de libertad, riesgo percibido durante el transporte, soporte percibido por parte de los centros de diálisis, capacidad de resiliencia, miedo a la muerte e impacto de la vacunación. Conclusiones: en la etapa álgida del brote epidémico las vivencias de las cuidadoras estuvieron muy influidas por el desconocimiento de la enfermedad y el miedo al contagio. Adaptaron medidas de auto prevención para mantener a salvo a su familiar. Apreciaron la seguridad proporcionada por los profesionales de los centros. Les preocupaba los riesgos inherentes a los traslados y la falta de soporte de los servicios sociales. Son conscientes de su propia fragilidad y la de la persona cuidada y no perciben grandes cambios ni en su forma de vida ni en su esperanza de futuro, pese a la vacunación y otros adelantos científicos

    Evaluación del impacto asistencial de la puesta en funcionamiento de una unidad funcional de artroplastia de rodilla

    Get PDF
    ResumenObjetivosEvaluar el impacto sobre el consumo de recursos hospitalarios, la calidad y los costes directos del proceso asistencial, de la puesta en funcionamiento de una unidad funcional de artroplastia de rodilla en el Hospital de l’Esperança (Barcelona).MétodosEstudio retrospectivo basado en dos cortes transversales, el primero con 317 pacientes intervenidos en 2004, antes de la implantación de la unidad funcional de artroplastia de rodilla, y el segundo con 624 pacientes intervenidos en 2005. Se recogieron datos de proceso, complicaciones y costes.ResultadosLa estancia media disminuyó en 9 días (p<0,001). Aumentaron los pacientes que requirieron convalecencia después de la intervención en un 9,5% (p<0,001). Se produjo un descenso del 16% en el coste global del proceso: de 9031,34 a 7591,54 € (p<0,001), ligado a la disminución de la estancia (2946,0 frente a 1616,8 €), de la intervención quirúrgica (2.156,7 frente a 1776,7 €) y del coste de las prótesis (2730,5 frente a 2678,1 €).ConclusionesLa creación de la unidad funcional de artroplastia de rodilla ha reducido el coste global y la estancia media, sin cambios en la tasa de complicaciones, a la vez que incrementa de forma muy importante la actividad.AbstractObjectivesTo evaluate the impact of a functional knee arthroplasty unit in Hospital de l’Esperança (Barcelona) on resource consumption, quality indicators and the direct costs of the healthcare process.MethodWe performed a retrospective study based on two cross-sections: the first in 317 patients who underwent surgery in 2004 before the implementation of the functional knee arthroplasty unit and the second in 624 patients who underwent surgery in 2005. Data related to the process, complications and costs were collected.ResultsThe mean length of hospital stay decreased by 9 days (p <0.001). The number of patients requiring convalescence after the intervention increased by 9.5% (p <0.001). Overall, the total cost of the healthcare process decreased by 16%, from 9,031.34 to 7,591.54 € (p <0.001). This cost reduction was due to decreases in the length of hospital stay (2,946.0 vs. 1,616.8 €), surgery costs (2,156.7 vs. 1,776.7 €) and prosthesis costs (2,730.5 vs. 2,678.1 €).ConclusionsThe implementation of the functional knee arthroplasty unit reduced overall costs and length of hospital stay and substantially increased activity while maintaining a similar complication rate

    Valoración pre-quirúrgica en pacientes ancianos candidatos a artroplastia total de rodilla: consulta externa de enfermería

    No full text
    Objetivo: Análisis descriptivo de los datos obtenidos en una consulta de enfermería en población geriátrica candidata a prótesis total de rodilla y su posible influencia en la consecución de una estancia media hospitalaria inferior a 10 días. Método: Revisión de 298 pacientes (abril 2005-julio 2005). Variables: edad, sexo, Barthel pre-quirúrgico, Indice de comorbilidad de Charlson, Escala de valoración cognitiva de Pfeiffer, Escala depresión geriátrica (GDS), número de consultas a Trabajador Social, estancia media del ingreso y destino al alta. Resultados: Población con edad media de 72 años; predominantemente femenina (4:1); Barthel pre-quirúrgico medio de 96; con baja comorbilidad (78% Charlson 0 y 1), poco riesgo de depresión (alrededor del 5% puntúan más de 5 en la GDS), poco deterioro cognitivo (5% entre leve y moderado). Un 40 % de los pacientes requirieron consulta y actuación de Trabajador Social antes de la cirugía. La estancia media hospitalaria fue de 9 días. Las altas fueron: 281 pacientes a domicilio, 16 pacientes a centro socio-sanitario y 1 paciente fue trasladado a otro servicio por complicación médica. Conclusiones: la información obtenida nos permite averiguar el perfil sanitario de nuestra población y la detección y tratamiento precoz de los posibles problemas relacionados con el momento del alta
    corecore