745 research outputs found
Black holes and Higgs stability
We study the effect of primordial black holes on the classical rate of
nucleation of AdS regions within the standard electroweak vacuum. We find that
the energy barrier for transitions to the new vacuum, which characterizes the
exponential suppression of the nucleation rate, can be reduced significantly in
the black-hole background. A precise analysis is required in order to determine
whether the the existence of primordial black holes is compatible with the form
of the Higgs potential at high temperature or density in the Standard Model or
its extensions.Comment: 27 pages, 10 figures, conclusions expanded, to appear in JCA
Determination of the freeze-out temperature by the isospin thermometer
The high-resolution spectrometer FRS at GSI Darmstadt provides the full
isotopic and kinematical identification of fragmentation residues in
relativistic heavy-ion collisions. Recent measurements of the isotopic
distribution of heavy projectile fragments led to a very surprising new
physical finding: the residue production does not lose the memory of the N/Z of
the projectile ending up in a universal de-excitation corridor; an ordering of
the residues in relation to the neutron excess of the projectile has been
observed. These unexpected features can be interpreted as a new manifestation
of multifragmentation. We have found that at the last stage of the reaction the
temperature of the big clusters subjected to evaporation is limited to a
universal value. The thermometer to measure this limiting temperature is the
neutron excess of the residues.Comment: 8 pages, 6 figures, corrected some misprints in the abstract, to be
published in "Yadernaya Fizika" as a proceeding of the "VII International
School Seminar on Heavy-Ion Phyics", Dubna (Russia), May 27 - June 1, 200
Neutrino propagation in a random magnetic field
The active-sterile neutrino conversion probability is calculated for neutrino
propagating in a medium in the presence of random magnetic field fluctuations.
Necessary condition for the probability to be positive definite is obtained.
Using this necessary condition we put constraint on the neutrino magnetic
moment from active-sterile electron neutrino conversion in the early universe
hot plasma and in supernova.Comment: 11 page
On the sign of the neutrino asymmetry induced by active-sterile neutrino oscillations in the early Universe
We deal with the problem of the final sign of the neutrino asymmetry
generated by active-sterile neutrino oscillations in the Early Universe solving
the full momentum dependent quantum kinetic equations. We study the parameter
region . For a large
range of values the sign of the neutrino asymmetry is fixed
and does not oscillate. For values of mixing parameters in the region
, the neutrino asymmetry appears to undergo rapid
oscillations during the period where the exponential growth occurs. Our
numerical results indicate that the oscillations are able to change the
neutrino asymmetry sign. The sensitivity of the solutions and in particular of
the final sign of lepton number to small changes in the initial conditions
depends whether the number of oscillations is high enough. It is however not
possible to conclude whether this effect is induced by the presence of a
numerical error or is an intrinsic feature. As the amplitude of the statistical
fluctuations is much lower than the numerical error, our numerical analysis
cannot demonstrate the possibility of a chaotical generation of lepton domains.
In any case this possibility is confined to a special region in the space of
mixing parameters and it cannot spoil the compatibility of the
solution to the neutrino atmospheric data
obtained assuming a small mixing of the with an
neutrino.Comment: Typo's corrected, accepted for publication in Phys.Rev.
A non-Gaussian landscape
Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f_NL|>> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |fNL^{obs.}|<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations
Transient effects in fission evidenced from new experimental signatures
A new experimental approach is introduced to investigate the relaxation of
the nuclear deformation degrees of freedom. Highly excited fissioning systems
with compact shapes and low angular momenta are produced in peripheral
relativistic heavy-ion collisions. Both fission fragments are identified in
atomic number. Fission cross sections and fission-fragment element
distributions are determined as a function of the fissioning element. From the
comparison of these new observables with a nuclear-reaction code a value for
the transient time is deduced.Comment: 6 pages, 2 figures, background information at
http://www-w2k.gsi.de/kschmidt
Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions
The production of heavy nuclides from the spallation-evaporation reaction of
238U induced by 1 GeV protons was studied in inverse kinematics. The
evaporation residues from tungsten to uranium were identified in-flight in mass
and atomic number. Their production cross-sections and their momentum
distributions were determined. The data are compared with empirical
systematics. A comparison with previous results from the spallation of 208Pb
and 197Au reveals the strong influence of fission in the spallation of 238U.Comment: 20 pages, 10 figures, background information at
http://www-wnt.gsi.de/kschmidt
Sterile Neutrinos as Dark Matter
The simplest model that can accomodate a viable nonbaryonic dark matter
candidate is the standard electroweak theory with the addition of right-handed
or sterile neutrinos. We reexamine this model and find that the sterile
neutrinos can be either hot, warm, or cold dark matter. Since their only direct
coupling is to left-handed or active neutrinos, the most efficient production
mechanism is via neutrino oscillations. If the production rate is always less
than the expansion rate, then these neutrinos will never be in thermal
equilibrium. However, enough of them may be produced so that they provide the
missing mass necessary for closure. We consider a single generation of neutrino
fields with a Dirac mass, , and a Majorana
mass for the right-handed components only, . For we show that the
number density of sterile neutrinos is proportional to so that the
energy density today is {\it independent of} . However is crucial in
determining the large scale structure of the Universe. In particular, leads to warm dark matter and a structure formation
scenario that may have some advantages over both the standard hot and cold dark
matter scenarios.Comment: 10 pages (1 figure available upon request) phyzzx,
FERMILAB-Pub-93/057-
- …