567 research outputs found

    Black holes and Higgs stability

    Full text link
    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.Comment: 27 pages, 10 figures, conclusions expanded, to appear in JCA

    Determination of the freeze-out temperature by the isospin thermometer

    Full text link
    The high-resolution spectrometer FRS at GSI Darmstadt provides the full isotopic and kinematical identification of fragmentation residues in relativistic heavy-ion collisions. Recent measurements of the isotopic distribution of heavy projectile fragments led to a very surprising new physical finding: the residue production does not lose the memory of the N/Z of the projectile ending up in a universal de-excitation corridor; an ordering of the residues in relation to the neutron excess of the projectile has been observed. These unexpected features can be interpreted as a new manifestation of multifragmentation. We have found that at the last stage of the reaction the temperature of the big clusters subjected to evaporation is limited to a universal value. The thermometer to measure this limiting temperature is the neutron excess of the residues.Comment: 8 pages, 6 figures, corrected some misprints in the abstract, to be published in "Yadernaya Fizika" as a proceeding of the "VII International School Seminar on Heavy-Ion Phyics", Dubna (Russia), May 27 - June 1, 200

    Neutrino propagation in a random magnetic field

    Get PDF
    The active-sterile neutrino conversion probability is calculated for neutrino propagating in a medium in the presence of random magnetic field fluctuations. Necessary condition for the probability to be positive definite is obtained. Using this necessary condition we put constraint on the neutrino magnetic moment from active-sterile electron neutrino conversion in the early universe hot plasma and in supernova.Comment: 11 page

    On the sign of the neutrino asymmetry induced by active-sterile neutrino oscillations in the early Universe

    Get PDF
    We deal with the problem of the final sign of the neutrino asymmetry generated by active-sterile neutrino oscillations in the Early Universe solving the full momentum dependent quantum kinetic equations. We study the parameter region 102<δm2/eV210310^{-2} \stackrel{<}{\sim} |\delta m^2|/eV^2\le 10^3. For a large range of sin22θ0\sin^2 2\theta_0 values the sign of the neutrino asymmetry is fixed and does not oscillate. For values of mixing parameters in the region 106<sin22θ0<3×104(eV2/δm2)10^{-6}\stackrel{<}{\sim}\sin^{2}2\theta_{0}\stackrel{<}{\sim} 3\times 10^{-4} ({\rm eV}^{2}/|\delta m^{2}|), the neutrino asymmetry appears to undergo rapid oscillations during the period where the exponential growth occurs. Our numerical results indicate that the oscillations are able to change the neutrino asymmetry sign. The sensitivity of the solutions and in particular of the final sign of lepton number to small changes in the initial conditions depends whether the number of oscillations is high enough. It is however not possible to conclude whether this effect is induced by the presence of a numerical error or is an intrinsic feature. As the amplitude of the statistical fluctuations is much lower than the numerical error, our numerical analysis cannot demonstrate the possibility of a chaotical generation of lepton domains. In any case this possibility is confined to a special region in the space of mixing parameters and it cannot spoil the compatibility of the νμνs\nu_{\mu}\leftrightarrow\nu_{s} solution to the neutrino atmospheric data obtained assuming a small mixing of the νs\nu_{s} with an eVτ{\rm eV}-\tau neutrino.Comment: Typo's corrected, accepted for publication in Phys.Rev.

    Transient effects in fission evidenced from new experimental signatures

    Full text link
    A new experimental approach is introduced to investigate the relaxation of the nuclear deformation degrees of freedom. Highly excited fissioning systems with compact shapes and low angular momenta are produced in peripheral relativistic heavy-ion collisions. Both fission fragments are identified in atomic number. Fission cross sections and fission-fragment element distributions are determined as a function of the fissioning element. From the comparison of these new observables with a nuclear-reaction code a value for the transient time is deduced.Comment: 6 pages, 2 figures, background information at http://www-w2k.gsi.de/kschmidt

    Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    Full text link
    The production of heavy nuclides from the spallation-evaporation reaction of 238U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208Pb and 197Au reveals the strong influence of fission in the spallation of 238U.Comment: 20 pages, 10 figures, background information at http://www-wnt.gsi.de/kschmidt

    Tracking Curvaton(s)?

    Full text link
    The ratio of the curvaton energy density to that of the dominant component of the background sources may be constant during a significant period in the evolution of the Universe. The possibility of having tracking curvatons, whose decay occurs prior to the nucleosynthesis epoch, is studied. It is argued that the tracking curvaton dynamics is disfavoured since the value of the curvature perturbations prior to curvaton decay is smaller than the value required by observations. It is also argued, in a related context, that the minimal inflationary curvature scale compatible with the curvaton paradigm may be lowered in the case of low-scale quintessential inflation.Comment: 20 pages, 4figure

    Evaporation residues produced in spallation of 208Pb by protons at 500A MeV

    Full text link
    The production cross sections of fragmentation-evaporation residues in the reaction Pb+p at 500A MeV have been measured using the inverse-kinematics method and the FRS spectrometer (GSI). Fragments were identified in nuclear charge using ionisation chambers. The mass identification was performed event-by-event using the B-rho - TOF - Delta-E technique. Although partially-unresolved ionic charge states induced an ambiguity on the mass of some heavy fragments, production rates could be obtained with a high accuracy by systematically accounting for the polluting ionic charge states. The contribution of multiple reactions in the target was subtracted using a new, partly self-consistent code. The isobaric distributions are found to have a shape very close to the one observed in experiments at higher energy. Kinematic properties of the fragments were also measured. The total and the isotopic cross sections, including charge-pickup cross sections, are in good agreement with previous measurements. The data are discussed in the light of previous spallation measurements, especially on lead at 1 GeV
    corecore