36 research outputs found

    How does tephra deposit thickness change over time? A calibration exercise based on the 1980 Mount St Helens tephra deposit

    Get PDF
    Tephra layers are frequently used to reconstruct past volcanic activity. Inferences made from tephra layers rely on the assumption that the preserved tephra layer is representative of the initial deposit. However, a great deal can happen to tephra after it is deposited; thus, tephra layer taphonomy is a crucial but poorly understood process. The overall goal of this research was to gain greater insight into the taphonomy of terrestrial tephra layers. We approached this by a) conducting a new survey of the tephra layer from the recent, well-studied eruption of Mount St Helens on May 18th, 1980 (MSH1980); b) modelling the tephra layer thickness using an objective mathematical technique and c) comparing our results with an equivalent model based on measurements taken immediately after the eruption. In this way, we aimed to quantify any losses and transformations that have occurred. During our study, we collected measurements of tephra layer thickness from 86 locations ranging from 600 km from the vent. Geochemical analysis was used to verify the identity of tephra of uncertain origin. Our results indicated that the extant tephra layer at undisturbed sites was representative of the original deposit: overall, preservation in these locations (in terms of thickness, stratigraphy and geochemistry) had been remarkably good. However, isopach maps generated from our measurements diverged from isopachs derived from the original survey data. Furthermore, our estimate of the quantity of tephra produced during eruption greatly exceeded previous estimates of the fallout volume. In this case, inaccuracies in the modelled fallout arose from issues of sampling strategy, rather than taphonomy. Our results demonstrate the sensitivity of volcanological reconstructions to measurement location, and the great importance of reliably measured low/zero values in reconstructing tephra deposits

    Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary

    Get PDF
    Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global dataset suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) >6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ~8 Ma, 6–4 Ma and further increase after ~2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of Northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ~8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favourable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions

    Near-real-time volcanic cloud monitoring: insights into global explosive volcanic eruptive activity through analysis of Volcanic Ash Advisories

    Get PDF
    Understanding the location, intensity, and likely duration of volcanic hazards is key to reducing risk from volcanic eruptions. Here, we use a novel near-real-time dataset comprising Volcanic Ash Advisories (VAAs) issued over 10 years to investigate global rates and durations of explosive volcanic activity. The VAAs were collected from the nine Volcanic Ash Advisory Centres (VAACs) worldwide. Information extracted allowed analysis of the frequency and type of explosive behaviour, including analysis of key eruption source parameters (ESPs) such as volcanic cloud height and duration. The results reflect changes in the VAA reporting process, data sources, and volcanic activity through time. The data show an increase in the number of VAAs issued since 2015 that cannot be directly correlated to an increase in volcanic activity. Instead, many represent increased observations, including improved capability to detect low- to mid-level volcanic clouds (FL101–FL200, 3–6 km asl), by higher temporal, spatial, and spectral resolution satellite sensors. Comparison of ESP data extracted from the VAAs with the Mastin et al. (J Volcanol Geotherm Res 186:10–21, 2009a) database shows that traditional assumptions used in the classification of volcanoes could be much simplified for operational use. The analysis highlights the VAA data as an exceptional resource documenting global volcanic activity on timescales that complement more widely used eruption datasets

    Event trees and epistemic uncertainty in long‐term volcanic hazard assessment of Rift Volcanoes: the example of Aluto (Central Ethiopia)

    Get PDF
    Aluto is a peralkaline rhyolitic caldera located in a highly populated area in central Ethiopia. Its postcaldera eruptive activity has mainly consisted of self‐similar, pumice‐cone‐building eruptions of varying size and vent location. These eruptions are explosive, generating hazardous phenomena that could impact proximal to distal areas from the vent. Volcanic hazard assessments in Ethiopia and the East African Rift are still limited in number. In this study, we develop an event tree model for Aluto volcano. The event tree is doubly useful: It facilitates the design of a conceptual model for the volcano and provides a framework to quantify volcanic hazard. We combine volcanological data from past and recent research at Aluto, and from a tool to objectively derive analog volcanoes (VOLCANS), to parameterize the event tree, including estimates of the substantial epistemic uncertainty. Results indicate that the probability of a silicic eruption in the next 50 years is highly uncertain, ranging from 2% to 35%. This epistemic uncertainty has a critical influence on event‐tree estimates for other volcanic events, like the probability of occurrence of pyroclastic density currents (PDCs) in the next 50 years. The 90% credible interval for the latter is 5–16%, considering only the epistemic uncertainty in conditional eruption size and PDC occurrence, but 2–23% when adding the epistemic uncertainty in the probability of eruption in 50 years. Despite some anticipated challenges, we envisage that our event tree could be translated to other rift volcanoes, making it an important tool to quantify volcanic hazard in Ethiopia and elsewhere

    An objective method for the production of isopach maps and implications for the estimation of tephra deposit volumes and their uncertainties

    Get PDF
    Characterization of explosive volcanic eruptive processes from interpretation of deposits is a key for assessing volcanic hazard and risk, particularly for infrequent large explosive eruptions and those whose deposits are transient in the geological record. While eruption size—determined by measurement and interpretation of tephra fall deposits—is of particular importance, uncertainties for such measurements and volume estimates are rarely presented. Here, tephra volume estimates are derived from isopach maps produced by modeling raw thickness data as cubic B-spline curves under tension. Isopachs are objectively determined in relation to original data and enable limitations in volume estimates from published maps to be investigated. The eruption volumes derived using spline isopachs differ from selected published estimates by 15–40 %, reflecting uncertainties in the volume estimation process. The formalized analysis enables identification of sources of uncertainty; eruptive volume uncertainties (>30 %) are much greater than thickness measurement uncertainties (~10 %). The number of measurements is a key factor in volume estimate uncertainty, regardless of method utilized for isopach production. Deposits processed using the cubic B-spline method are well described by 60 measurements distributed across each deposit; however, this figure is deposit and distribution dependent, increasing for geometrically complex deposits, such as those exhibiting bilobate dispersion. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00445-015-0942-y) contains supplementary material, which is available to authorized users

    Tephrostratigraphy and provenance from IODP Expedition 352, Izu-Bonin arc: tracing tephra sources and volumes from the Oligocene to the Recent

    Get PDF
    Provenance studies of widely distributed tephras, integrated within a well-defined temporal framework, are important to deduce systematic changes in the source, scale, distribution and changes in regional explosive volcanism. Here, we establish a robust tephro-chronostratigraphy for a total of 157 marine tephra layers collected during IODP Expedition 352. We infer at least three major phases of highly explosive volcanism during Oligocene to Pleistocene time. Provenance analysis based on glass composition assigns 56 of the tephras to a Japan source, including correlations with 12 major and widespread tephra layers resulting from individual eruptions in Kyushu, Central Japan and North Japan between 115 ka and 3.5 Ma. The remaining 101 tephras are assigned to four source regions along the Izu-Bonin arc. One, of exclusively Oligocene age, is proximal to the Bonin Ridge islands; two reflect eruptions within the volcanic front and back-arc of the central Izu-Bonin arc, and a fourth region corresponds to the Northern Izu-Bonin arc source. First-order volume estimates imply eruptive magnitudes ranging from 6.3 to 7.6 for Japan-related eruptions and between 5.5 and 6.5 for IBM eruptions. Our results suggest tephras between 30 and 22 Ma that show a subtly different Izu-Bonin chemical signature compared to the recent arc. After a ∼11 m.y. gap in eruption, tephra supply from the Izu-Bonin arc predominates from 15 to 5 Ma, and finally a subequal mixture of tephra sources from the (palaeo)Honshu and Izu-Bonin arcs occurs within the last ∼5 Ma

    A review of laboratory and numerical modelling in volcanology

    No full text
    Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world data

    Physical characteristics of tephra layers in the deep sea realm:The campanian ignimbrite eruption

    Get PDF
    Tephra deposits in the deep sea can survive undisturbed for long periods of time and, on regional scales, tend to be much better preserved than their subaerial counterparts. In this study, grain size distributions and thicknesses of tephra deposits from the Campanian Ignimbrite (CI) eruption (39 000 yr BP; magnitude c. 7.7) preserved in thirty-three deep sea cores are analysed to infer key eruption parameters. Distal deep sea tephra thickness data show an exponential decrease with distance from source. Such trends are difficult to identify in distal subaerial data owing to reworking and limited exposure. We find that tephra grain size distributions are much less affected by depositional environment than thickness, with trends that are consistent across distal subaerial, lacustrine and deep sea environments. The CI layer exhibits bimodal grain size distributions to distances of c. 1000 km, after which it becomes unimodal. Such trends can be related to different mechanisms of tephra transport in the atmosphere, whereby at proximal to medial distances the Plinian and co-ignimbrite phases produce distinct plumes. Within 150 and 900 km from source, Plinian tephra constitutes 40±5% of the deposit volume. Beyond this region where coarse particles are deposited, the plumes merge and fines derived largely from co-ignimbrite elutriation are spread in the atmosphere at velocities greater than the settling velocities of the particles
    corecore