135 research outputs found

    Screening of Nuclear Reactions in the Sun and Solar Neutrinos

    Full text link
    We quantitatively determine the effect and the uncertainty on solar neutrino production arising from the screening process. We present predictions for the solar neutrino fluxes and signals obtained with different screening models available in the literature and by using our stellar evolution code. We explain these numerical results in terms of simple laws relating the screening factors with the neutrino fluxes. Futhermore we explore a wider range of models for screening, obtained from the Mitler model by introducing and varying two phenomenological parameters, taking into account effects not included in the Mitler prescription. Screening implies, with respect to a no-screening case, a central temperat reduction of 0.5%, a 2% (8%) increase of Beryllium (Boron)-neutrino flux and a 2% (12%) increase of the Gallium (Chlorine) signal. We also find that uncertainties due to the screening effect ar at the level of 1% for the predicted Beryllium-neutrino flux and Gallium signal, not exceeding 3% for the Boron-neutrino flux and the Chlorine signal.Comment: postscript file 11 pages + 4 figures compressed and uuencoded we have replaced the previous paper with a uuencoded file (the text is the same) for any problem please write to [email protected]

    Radiation correction to astrophysical fusion reactions and the electron screening problem

    Get PDF
    We discuss the effect of electromagnetic environment on laboratory measurements of the nuclear fusion reactions of astrophysical interest. The radiation field is eliminated using the path integral formalism in order to obtain the influence functional, which we evaluate in the semi-classical approximation. We show that enhancement of the tunneling probability due to the radiation correction is extremely small and does not resolve the longstanding problem that the observed electron screening effect is significantly larger than theoretical predictions.Comment: 9 pages, 1 eps figure

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production

    Nuclear Reaction Network for Primordial Nucleosynthesis: a detailed analysis of rates, uncertainties and light nuclei yields

    Full text link
    We analyze in details the standard Primordial Nucleosynthesis scenario. In particular we discuss the key theoretical issues which are involved in a detailed prediction of light nuclide abundances, as the weak reaction rates, neutrino decoupling and nuclear rate modeling. We also perform a new analysis of available data on the main nuclear processes entering the nucleosynthesis reaction network, with particular stress on their uncertainties as well as on their role in determining the corresponding uncertainties on light nuclide theoretical estimates. The current status of theoretical versus experimental results for 2H, 3He, 4He and 7Li is then discussed using the determination of the baryon density as obtained from Cosmic Microwave Background anisotropies.Comment: LaTeX, 83 pages, 30 .pdf figures. Some typos in the units of R-functions in appendix D and relative plots fixe

    Biochemical and genetic characterization of <em>Trypanosoma cruzi N</em>-myristoyltransferase

    Get PDF
    Co- and post-translational N-myristoylation is known to play a role in the correct subcellular localization of specific proteins in eukaryotes. The enzyme that catalyses this reaction, NMT (N-myristoyltransferase), has been pharmacologically validated as a drug target in the African trypanosome, Trypanosoma brucei. In the present study, we evaluate NMT as a potential drug target in Trypanosoma cruzi, the causative agent of Chagas’ disease, using chemical and genetic approaches. Replacement of both allelic copies of TcNMT (T. cruzi NMT) was only possible in the presence of a constitutively expressed ectopic copy of the gene, indicating that this gene is essential for survival of T. cruzi epimastigotes. The pyrazole sulphonamide NMT inhibitor DDD85646 is 13–23-fold less potent against recombinant TcNMT than TbNMT (T. brucei NMT), with K(i) values of 12.7 and 22.8 nM respectively, by scintillation proximity or coupled assay methods. DDD85646 also inhibits growth of T. cruzi epimastigotes (EC(50)=6.9 μM), but is ~1000-fold less potent than that reported for T. brucei. On-target activity is demonstrated by shifts in cell potency in lines that over- and under-express NMT and by inhibition of intracellular N-myristoylation of several proteins in a dose-dependent manner. Collectively, our findings suggest that N-myristoylation is an essential and druggable target in T. cruzi

    Lithium Depletion in Pre-Mainsequence Solar-Like Stars

    Get PDF
    We examine the internal structure of solar-like stars in detail between 0.8 and 1.4M Sun and during pre-main sequence phase. Recent opacity computations of OPAL along with a new hydrodynamical mixing process have been considered. We also introduce up-to-date nuclear reaction rates and explore the impact of accretion, mixing-length parameter, non-solar distributions among metals and realistic rotation history. We compare models predictions of lithium depletion to the 7Li^7Li content observations of the Sun and to 4 young clusters of different metallicities and ages. We show that we can distinguish two phases in lithium depletion: 1- a rapid nuclear destruction in the T-Tauri phase before 20 Myrs : this is independent of the mass used within our range but largely dependent on the extension and temperature of the convective zone, 2- a second phase where the destruction is slow and moderate and which is largely dependent on the (magneto)hydrodynamic instability located at the base of the convective zone. In terms of composition, we show the interest on considering helium and especially the mixture of heavy elements : carbon, oxygen, silicium and iron. We outline the importance of O/Fe ratio. We note a reasonable agreement on lithium depletion for the two best known cases, the Sun and the Hyades cluster for solar-like stars. Other clusters suggest that processes which may partly inhibit the predicted premainsequence depletion cannot be excluded, in particular for stars below ~ 0.9M Sun. Finally we suggest different research areas such as initial stellar models and more realistic atmospheres which could contribute to a better understanding of this early phase of evolution and which should become the object of subsequent research.Comment: Astrophysical Journal, in pres

    Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro

    Get PDF
    The ability to reproduce the developmental events of trypanosomes that occur in their mammalian host in vitro offers significant potential to assist in understanding of the underlying biology of the process. For example, the transition from bloodstream slender to bloodstream stumpy forms is a quorum-sensing response to the parasite-derived peptidase digestion products of environmental proteins. As an abundant physiological substrate in vivo, we studied the ability of a basement membrane matrix enriched gel (BME) in the culture medium to support differentiation of pleomorphic Trypanosoma brucei to stumpy forms. BME comprises extracellular matrix proteins, which are among the most abundant proteins found in connective tissues in mammals and known substrates of parasite-released peptidases. We previously showed that two of these released peptidases are involved in generating a signal that promotes slender-to-stumpy differentiation. Here, we tested the ability of basement membrane extract to enhance parasite differentiation through its provision of suitable substrates to generate the quorum sensing signal, namely oligopeptides. Our results show that when grown in the presence of BME, T. brucei pleomorphic cells arrest at the G0/1 phase of the cell cycle and express the differentiation marker PAD1, the response being restricted to differentiation-competent parasites. Further, the stumpy forms generated in BME medium are able to efficiently proceed onto the next life cycle stage in vitro, procyclic forms, when incubated with cis-aconitate, further validating the in vitro BME differentiation system. Hence, BME provides a suitable in vitro substrate able to accurately recapitulate physiological parasite differentiation without the use of experimental animals

    Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei

    Get PDF
    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites

    Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies

    Get PDF
    The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a chronic infection
    corecore