949 research outputs found

    Dopaminergic and Noradrenergic Contributions to Functionality in ADHD: The Role of Methylphenidate

    Get PDF
    Attention Deficit Hyperactivity Disorder (ADHD) is a childhood psychiatric condition characterized by severe impulsiveness, inattention and overactivity. Methylphenidate (MPH), a psychostimulant affecting both the dopaminergic and the noradrenergic systems, is one of the most frequently prescribed treatments for ADHD. Despite the widespread use of MPH and its proven effectiveness, its precise neurochemical mechanisms of action are under debate. For the most part, MPH’s influence on subcortical dopamine neurotransmission is thought to play a crucial role in its behavioral and cognitive effects. In their hypothesis of biphasic MPH action, Seeman and Madras [42, 43] suggest that therapeutic doses of MPH elevate tonic dopamine while inhibiting phasic transmitter release in subcortical structures, leading to reduced postsynaptic receptor stimulation and psychomotor activation in response to salient stimuli. Volkow and colleagues [56] suggest that by amplifying a weak striatal dopamine signal, MPH increases the perception of a stimulus or task as salient. The enhanced interest for the task is thought to increase attention and improve performance. Recent animal studies have however shown that when administered at doses producing clinically relevant drug plasma levels and enhancing cognitive function, MPH preferentially activates dopamine and noradrenaline efflux within the prefrontal cortex relative to the subcortical structures [5]. Overall, we suggest that the delineated theories of MPH therapeutic action should not be discussed as exclusive. Studies are outlined that allow integrating the different findings and models

    Self-organized critical neural networks

    Full text link
    A mechanism for self-organization of the degree of connectivity in model neural networks is studied. Network connectivity is regulated locally on the basis of an order parameter of the global dynamics which is estimated from an observable at the single synapse level. This principle is studied in a two-dimensional neural network with randomly wired asymmetric weights. In this class of networks, network connectivity is closely related to a phase transition between ordered and disordered dynamics. A slow topology change is imposed on the network through a local rewiring rule motivated by activity-dependent synaptic development: Neighbor neurons whose activity is correlated, on average develop a new connection while uncorrelated neighbors tend to disconnect. As a result, robust self-organization of the network towards the order disorder transition occurs. Convergence is independent of initial conditions, robust against thermal noise, and does not require fine tuning of parameters.Comment: 5 pages RevTeX, 7 figures PostScrip

    Genetic variants and early cigarette smoking and nicotine dependence phenotypes in adolescents

    Get PDF
    Background: While the heritability of cigarette smoking and nicotine dependence (ND) is well-documented, the contribution of specific genetic variants to specific phenotypes has not been closely examined. The objectives of this study were to test the associations between 321 tagging single-nucleotide polymorphisms (SNPs) that capture common genetic variation in 24 genes, and early smoking and ND phenotypes in novice adolescent smokers, and to assess if genetic predictors differ across these phenotypes. Methods: In a prospective study of 1294 adolescents aged 12–13 years recruited from ten Montreal-area secondary schools, 544 participants who had smoked at least once during the 7–8 year follow-up provided DNA. 321 single-nucleotide polymorphisms (SNPs) in 24 candidate genes were tested for an association with number of cigarettes smoked in the past 3 months, and with five ND phenotypes (a modified version of the Fagerstrom Tolerance Questionnaire, the ICD-10 and three clusters of ND symptoms representing withdrawal symptoms, use of nicotine for self-medication, and a general ND/craving symptom indicator). Results: The pattern of SNP-gene associations differed across phenotypes. Sixteen SNPs in seven genes (ANKK1, CHRNA7, DDC, DRD2, COMT, OPRM1, SLC6A3 (also known as DAT1)) were associated with at least one phenotype with a p-value ,0.01 using linear mixed models. After permutation and FDR adjustment, none of the associations remained statistically significant, although the p-values for the association between rs557748 in OPRM1 and the ND/craving and selfmedication phenotypes were both 0.076. Conclusions: Because the genetic predictors differ, specific cigarette smoking and ND phenotypes should be distinguished in genetic studies in adolescents. Fifteen of the 16 top-ranked SNPs identified in this study were from loci involved in dopaminergic pathways (ANKK1/DRD2, DDC, COMT, OPRM1, and SLC6A3). Impact: Dopaminergic pathways may be salient during early smoking and the development of ND

    Active flow control systems architectures for civil transport aircraft

    Get PDF
    Copyright @ 2010 American Institute of Aeronautics and AstronauticsThis paper considers the effect of choice of actuator technology and associated power systems architecture on the mass cost and power consumption of implementing active flow control systems on civil transport aircraft. The research method is based on the use of a mass model that includes a mass due to systems hardware and a mass due to the system energy usage. An Airbus A320 aircraft wing is used as a case-study application. The mass model parameters are based on first-principle physical analysis of electric and pneumatic power systems combined with empirical data on system hardware from existing equipment suppliers. Flow control methods include direct fluidic, electromechanical-fluidic, and electrofluidic actuator technologies. The mass cost of electrical power distribution is shown to be considerably less than that for pneumatic systems; however, this advantage is reduced by the requirement for relatively heavy electrical power management and conversion systems. A tradeoff exists between system power efficiency and the system hardware mass required to achieve this efficiency. For short-duration operation the flow control solution is driven toward lighter but less power-efficient systems, whereas for long-duration operation there is benefit in considering heavier but more efficient systems. It is estimated that a practical electromechanical-fluidic system for flow separation control may have a mass up to 40% of the slat mass for a leading-edge application and 5% of flap mass for a trailing-edge application.This work is funded by the Sixth European Union Framework Programme as part of the AVERT project (Contract No. AST5-CT-2006-030914

    Association of Short-term Change in Leukocyte Telomere Length With Cortical Thickness and Outcomes of Mental Training Among Healthy Adults

    Get PDF
    Importance:Telomere length is associated with the development of age-related diseases and structural differences in multiple brain regions. It remains unclear, however, whether change in telomere length is linked to brain structure change, and to what extent telomere length can be influenced through mental training. Objectives:To assess the dynamic associations between leukocyte telomere length (LTL) and cortical thickness (CT), and to determine whether LTL is affected by a longitudinal contemplative mental training intervention. Design, Setting, and Participants:An open-label efficacy trial of three 3-month mental training modules with healthy, meditation-naive adults was conducted. Data on LTL and CT were collected 4 times over 9 months between April 22, 2013, and March 31, 2015, as part of the ReSource Project. Data analysis was performed between September 23, 2016, and June 21, 2019. Of 1582 eligible individuals, 943 declined to participate; 362 were randomly selected for participation and assigned to training or retest control cohorts, with demographic characteristics matched. The retest control cohorts underwent all testing but no training. Intention-to-treat analysis was performed. Interventions:Training cohort participants completed 3 modules cultivating interoception and attention (Presence), compassion (Affect), or perspective taking (Perspective). Main Outcomes and Measures:Change in LTL and CT. Results:Of the 362 individuals randomized, 30 participants dropped out before study initiation (initial sample, 332). Data were available for analysis of the training intervention in 298 participants (n = 222 training; n = 76 retest control) (175 women [58.7%]; mean [SD] age, 40.5 [9.3] years). The training modules had no effect on LTL. In 699 observations from all 298 participants, mean estimated changes in the relative ratios of telomere repeat copy number to single-copy gene (T/S) were for no training, 0.004 (95% CI, -0.010 to 0.018); Presence, -0.007 (95% CI, -0.025 to 0.011); Affect, -0.005 (95% CI, -0.019 to 0.010); and Perspective, -0.001 (95% CI, -0.017 to 0.016). Cortical thickness change data were analyzed in 167 observations from 67 retest control participants (37 women [55.2%], mean [SD] age, 39.6 [9.0] years). In this retest control cohort subsample, naturally occurring LTL change was related to CT change in the left precuneus extending to the posterior cingulate cortex (mean t161 = 3.22; P < .001; r = 0.246). At the individual participant level, leukocyte telomere shortening as well as lengthening were observed. Leukocyte telomere shortening was related to cortical thinning (t77 = 2.38; P = .01; r = 0.262), and leukocyte telomere lengthening was related to cortical thickening (t77 = 2.42; P = .009; r = 0.266). All analyses controlled for age, sex, and body mass index. Conclusions and Relevance:The findings of this trial indicate an association between short-term change in LTL and concomitant change in plasticity of the left precuneus extending to the posterior cingulate cortex. This result contributes to the evidence that LTL changes more dynamically on the individual level than previously thought. Further studies are needed to determine potential long-term implications of such change in relation to cellular aging and the development of neurodegenerative disorders. No effect of contemplative mental training was noted in what may be, to date, the longest intervention with healthy adults. Trial Registration:ClinicalTrials.gov identifier: NCT01833104

    Human anti-CD30 recombinant antibodies by guided phage antibody selection using cell panning

    Get PDF
    In various clinical studies, Hodgkin’s patients have been treated with anti-CD30 immunotherapeutic agents and have shown promising responses. One of the problems that appeared from these studies is the development of an immune response against the non-human therapeutics, which limits repeated administration and reduces efficacy. We have set out to make a recombinant, human anti-CD30 single-chain variable fragment (scFv) antibody, which may serve as a targeting moiety with reduced immunogenicity and more rapid tumour penetration in similar clinical applications. Rather than selecting a naive phage antibody library on recombinant CD30 antigen, we used guided selection of a murine antibody in combination with panning on the CD30-positive cell line L540. The murine monoclonal antibody Ki-4 was chosen as starting antibody, because it inhibits the shedding of the extracellular part of the CD30 antigen. This makes the antibody better suited for CD30-targeting than most other anti-CD30 antibodies. We have previously isolated the murine Ki-4 scFv by selecting a mini-library of hybridoma-derived phage scFv-antibodies via panning on L540 cells. Here, we report that phage display technology was successfully used to obtain a human Ki-4 scFv version by guided selection. The murine variable heavy (VH) and light (VL) chain genes of the Ki-4 scFv were sequentially replaced by human V gene repertoires, while retaining only the major determinant for epitope-specificity: the heavy-chain complementarity determining region 3 (CDR3) of murine Ki-4. After two rounds of chain shuffling and selection by panning on L540 cells, a fully human anti-CD30 scFv was selected. It competes with the parental monoclonal antibody Ki-4 for binding to CD30, inhibits the shedding of the extracellular part of the CD30 receptor from L540 cells and is thus a promising candidate for the generation of anti-CD30 immunotherapeutics. © 2000 Cancer Research Campaig

    Photoperiodic Effects on Diurnal Rhythms in Cell Numbers of Peripheral Leukocytes in Domestic Pigs

    Get PDF
    The photoperiod is known to modulate immune cell number and function and is regarded essential for seasonal disease susceptibility. In addition, diurnal variations in the immune system are regarded important for immune competence. Whereas few studies investigated the influence of season, none investigated the specific effect of the photoperiod on these diurnal immune rhythms until now. Therefore, the present study compared diurnal rhythms in cell numbers of peripheral leukocyte types in domestic pigs held either under long day conditions (LD) or short day conditions (SD). Cosinor analyses of cell numbers of various peripheral leukocyte subtypes investigated over periods of 50 h revealed distinct photoperiodic differences in diurnal immune rhythms. Relative amplitudes of cell numbers of total leukocytes, NK cells, T cells, and monocytes in blood were higher under SD than LD. In addition, cell counts of total leukocytes, NK cells, T cells including various T cell subtypes, and eosinophils peaked earlier relative to the time of lights-on under SD than LD. In contrast, diurnal rhythms of neutrophil counts did not show photoperiodic differences. Mesor values did not differ in any leukocyte type. Generalized linear mixed model analyses revealed associations of leukocyte counts with plasma cortisol concentration and activity behavior in most investigated cell types. Moreover, the present study demonstrated photoperiodic effects on diurnal rhythms in plasma cortisol concentrations and activity behavior, which is in agreement with human and primate studies. The results of the present study imply stronger rhythmicity in leukocyte counts in general under SD. Common intrinsic mechanisms seem to regulate photoperiodic effects on diurnal rhythms in leukocyte counts, except for neutrophils, in domestic pigs. Our results reveal considerable insights into the regulation of immune rhythms in diurnally active species
    corecore